
1

Beyond Buzzwords: Intrinsic

Network Concepts

Radia Perlman

radia@alum.mit.edu

What this is NOT about

• Looking at all the details of a particular

protocol

• Telling you “the one answer”

2

What this IS about

• Focus separately on different aspects of protocols

• Look at alternative solutions for each orthogonal

piece, together with engineering tradeoffs for each

• Be thought-provoking; spark discussion

• Suggest areas that can be researched

• Hopefully same way of thinking can work in other

protocol areas

3

This talk

• Hopefully interactive

– Ask questions

– (within reason) argue

• I have way too much material (I think)…so

I intend to skip some of it (unless I really

underestimated the time it will take)

4

All opinions expressed herein

• Are mine alone

5

All opinions expressed herein

• Are mine alone

• Though I’m sure…independently shared by

lots of other people

• And, I’m attempting to find all arguments

pro and con for each aspect…please tell me

anything I may have missed

6

7

Perlman’s View of Network

Layers

• Based on OSI layers…

8

Perlman’s View of Network

Layers

• Layer 1: Physical

9

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

10

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

• Layer 3: Network: create path, forward

11

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

• Layer 3: Network: create path, forward

• Layer 4: “Transport”: end-to-end

reordering, error recovery

12

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

• Layer 3: Network: create path, forward

• Layer 4: “Transport”: end-to-end

reordering, error recovery

• Layers 5 and above:

13

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

• Layer 3: Network: create path, forward

• Layer 4: “Transport”: end-to-end

reordering, error recovery

• Layers 5 and above: boring!

Some mysteries

• What does it mean to forward at layer 2 vs

layer 3? Layer 3 is supposed to be the thing

doing forwarding.

• Why do switches have to worry about

keeping packets in order? Isn’t that TCP’s

job?

14

So what is routing?

• Data is put in an “envelope” with

information “X” indicating where the

packet should go

• A switch/router/bridge has a “forwarding

table”, indicating for “X”, which port(s) to

forward on

15

Forwarding Table

16

X1

X2

X3

X4

X5

X6

Etc…

{ports}

{ports}

{ports}

{ports}

{ports}

{ports}

etc

Basic components

• Information in a packet

• What the forwarding table is indexed by

• How the forwarding table is created

• Basis for spreading traffic

17

Forwarding Table

18

X1

X2

X3

X4

X5

X6

Etc…

{ports}

{ports}

{ports}

{ports}

{ports}

{ports}

etc

packet

X envelope

data

other stuff

Network Protocols

• A lot of what we all know

19

Network Protocols

• A lot of what we all know…is false!

20

How networking tends to be

taught

• Memorize these RFCs

• Nothing else ever existed

• Except possibly to make snide comments

about “other teams”

21

Things are so confusing

• Comparing technology A vs B

– Nobody knows both of them

– Somebody mumbles some vague marketing

thing, and everyone repeats it

– Both A and B are moving targets

22

How I wish we’d compare

• Isolate conceptual pieces

• Try to ignore buzzwords and “which team”

• Question assumptions

23

Orthogonal ways networks can

differ

• What information is in a packet

• Who computes the forwarding table

• Whether forwarding table is always complete, or

created on demand when a flow starts

• Whether switch can choose among multiple next

hops

• …

24

Some terminology

• “Flow” : a conversation between two

applications

– Usually networks attempt to deliver all packets

for a given flow in order

• Bridge/router/switch : something that

forwards packets; mostly interchangeable

terms

25

What’s in a packet; types of

addresses

• Flat (not location dependent)

– Direct lookup (if address small)

– Hash

• Hierarchical

– Fixed hierarchy

– Longest prefix match

26

Terminology I wish people

would use

• “ID” or “identifier” : doesn’t change if

target or source moves

• “name” : like ID, but human-friendly string

• “Address” : changes if target moves, but

source-location independent

• “Route” : changes if either target or source

location changes

27

“Address”

• Unfortunately, people don’t use the

terminology that way

• For instance, a “MAC address”

28

Flat Address

• “Flat” means isn’t location dependent

• (so it shouldn’t be an “address”, but oh

well…)

• Flat is very convenient, with virtualization,

self-configuration

• But if the entire Internet were flat addresses,

forwarding table would be too large

29

Forwarding Table

30

address1

address2

address3

address4

address5

address6

Etc…

{ports}

{ports}

{ports}

{ports}

{ports}

{ports}

etc

Two types of flat addresses

• Dense: address can be simple lookup:

address #n is nth entry in the forwarding

table

• Sparse: (like 6-byte Ethernet address)

address lookup has to be hash

31

Forwarding Table for Sparse Flat

Address

32

bucket1

bucket2

bucket3

bucket4

bucket5

bucket6

Etc…

{ports}

{ports}

{ports}

{ports}

{ports}

{ports}

etc

address

Hash

function

Ethernet addresses

• 6 bytes

• And for a technology originally intended to

support about 1000 nodes!

• Why so huge?

33

Ethernet addresses

• 6 bytes

• And for a technology originally intended to

support about 1000 nodes!

• Why so huge? – actually, Ethernet’s genius

– Addresses created when device manufactured

– No worries about configuring address when

deploying a network

34

Structure of Ethernet address

• 24 bits for “OUI” (organizationally unique

identifier, if you insist on expanding

acronyms), assigned by IEEE

– 2 special bits inside OUI:

• G/I (group/individual, or multicast/unicast)

• G/L (globally assigned vs locally assigned – if

locally assigned, then you can assign 46 bits)

• For globally assigned OUI, 24 bits you can

assign
35

36

802 addresses

• Assigned in blocks of 224

• Given 23-bit constant (OUI) plus g/i bit

• all 1’s intended to mean “broadcast”

OUI

global/local admin

group/individual

Trivia

• One early proposal was to assign 48-bit

MAC addresses at random…no IEEE

address blocks

• 48-bits is probably big enough for this to be

practical, and low enough probability of

address collision

37

Hierarchical addresses

• Similar to country/state/city

• If outside a country, don’t need to know the

structure of another country…just route to

that country

• Same with state

• Allows more compact forwarding table,

since many destinations can be summarized

in one entry (one “prefix”)
38

Hierarchical Address

39

27*
23*

2428*

2*

If addresses are assigned carefully, a whole blob can be

summarized with a single forwarding table entry, by switches

outside that blob

Fixed hierarchy

• You could set aside some # of bits for each

level, e.g., fixed fields for “country”,

“state”, “city”, …

• Find first field where target address differs

from yours…do flat address lookup (dense

or sparse) on that field

• But might not be flexible enough

• Alternative: Longest prefix match
40

41

Address Prefix Routing

• Given destination address, want to find

longest prefix match in forwarding table

• Two basic algorithms

– TRIE

– modified binary search

42

TRIE

• Character-by-character search

• “Character” might be single bit

• “*” means match

• remember last time “*” seen

• once nowhere to go, last “*” is longest

prefix match

43

TRIE

items in database:

null string, A, ABC, ABCDEF, ABDQ, AC

{}*

A

A*

B C

AB AC*

C D

ABC* ABD
Q

ABDQ*

D

ABCD
E

ABCDE
F

ABCDEF*

44

Binary search

• Create ranges

• Take each prefix

– pad with 0’s for low order of range

– pad with 1’s for hi order of range

• Sort them

• Find where destination address fits

45

Binary Search

items: {}, A, ABC, ABCDEF, ABDQ, AC

{}

A

ABC

ABCDEF
ABDQ AC

0000

ffff

A000 A111
ABC0 ABCff

ABCDEF0

Summary of address-based

alternatives

• Flat (dense or sparse) vs hierarchical

• Flat allows movement without changing

address

• Hierarchical scales better by allowing

summarization of all addresses in a blob

• You can move around within the blob

without changing your address

46

Another possibility: “Label”

• Packet contains “label”, which changes hop

by hop

• Forwarding table maps (input port, label) to

(output port, replacement label)

47

48

Label-Based

S

A

R1

R2

R3

R4

R5

D

3

4

7

2

4

3

1

2

3

(3,51)=(7,21)

(4,8)=(7,92)

(4,17)=(7,12)

(2,12)=(3,15)

(2,92)=(4,8)

(1,8)=(3,6)

(2,15)=(1,7)
VC=8, 92, 8, 6

Why labels?

• Originally for telephony (e.g., ATM, X.25)

– Total nodes much greater than currently communicating pairs

• Therefore, label can be shorter than destination address, and densely

assigned on each link

– OK to have latency while call set up

• For IP, grew out of “tag switching” (MPLS)

• Used now for “traffic engineering”

– However, you could do traffic engineering using a destination

rather than a label that changes hop by hop

– You could have multiple destination addresses for a destination if

you want multiple paths to that destination

49

Controversial thought

• I think anything MPLS is doing (and what

is that?) could be done better with a simple

header of “source/destination”

50

Some thoughts

• Dest-based vs label-based

– Destination-based is smaller (O(n)) forwarding table

than label-based (O(n2))

– Unless path set up when flow starts…but that incurs

latency

– Destination-based doesn’t preclude traffic engineering

• For instance, Infiniband “destination” is a path to the

destination, set up by a central fabric manager. If you want

multiple paths to a D, give D multiple addresses

51

Different topic: Keeping packets

in order

52

Different topic: Keeping packets

in order

• Keep packets for the same flow in order

– Because endnode protocols or implementations

will perform badly or actually fail (?)

– Or so destination immediately knows if a

packet was lost (if you get n, then n+2, and they

are in order, n+1 got lost)

• We want to spread traffic among lots of

paths

53

Exploiting parallel paths

54

S

R1a

R1b

R1c

R1d

R1e

R2a

R2b

R2c

R2d

R2e

R3a

R3b

R3c

R3d

R3e

D

Intel Confidential

Various strategies

• Switch R’s forwarding table contains a set of ports

for “X”

– R parses more of the packet; identify “flow” by TCP

ports, etc.

• R remembers which flows it has assigned to which port (a lot

of state); assigns port when new flow

• R hashes (ports, source, etc.) to choose same port

• Switch R’s forwarding table has one port for “X”

– Source chooses

55

If R’s forwarding table contains

multiple ports for X

• (And you have to keep packets for a flow in

order)

• Parse more of the packet, e.g., TCP ports,

source address, …

– Remember chosen port for each flow; assign

port if new flow

– Hash information to select same port

56

If R’s forwarding table contains

only one port for each X

• Have multiple entries in R’s forwarding

table for the destination (e.g., multiple

destination addresses).

• Source’s choice of which address to use for

the destination determines the entire path

57

“Entropy Field”

• A field added to the header for two

purposes

– To save each switch along the way from having

to do deep packet inspection to find ports, etc.

– To allow the source to spread the load for its

own flow, by choosing different entropy labels

58

Another concept: Flow-based

• Forwarding table based on (destination,

source, protocol type, TCP ports)

• Claim: better for spreading load

– If a central entity knows what all the flows are,

it can carefully place them

59

Seems to me…

• Flow-based vs destination-based

– Only way to make flow-based not totally

explode the forwarding table is to create entry

when flow starts (incur latency)

– Switch in better position to load-split traffic

than central fabric manager

60

Seems to me

• Switch in better position to path split based on

local queues

• Would be much better if it didn’t have to keep

things in order

• Even if it has to keep things in order, it can re-

hash to spread load

• “Flows” are not stable bandwidth…so central

fabric manager knowing all the flows can’t do as

good a job as switches

61

Opportunities for research

• Compare traffic utilization between knowledge of

all flows, and having forwarding entries with a

single choice for “flow”, or letting switches

choose among a set of output ports for a

destination

• Is congestion n hops away useful information, or

is just local queue length good enough? (there is a

cost to finding out congestion at other switches)

62

Completely orthogonal concept

63

Where does forwarding table

come from?

• Distributed algorithm

• Central fabric manager

• Neither concept new…and completely

orthogonal to “data plane”

• Concept of separation of control plane from

data plane not new…

64

Distributed Routing Protocol

65

66

New topic: Distributed Routing

Protocols

67

Distributed Routing Protocols

• Rtrs exchange control info

• Use it to calculate forwarding table

• Two basic types

– distance vector

– link state

68

Distance Vector

• Know

– your own ID

– how many cables hanging off your box

– cost, for each cable, of getting to nbr

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

69

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

70

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

71

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

72

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

73

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

74

j

k

m

n

cost 3

cost 2

cost 2

cost 7 I am “4”

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 11 8 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

75

Looping Problem

A B C

76

Looping Problem

A B C

0 1 2
Cost to C

77

Looping Problem

A B C

0 1 2
Cost to C

direction

towards C

direction

towards C

78

Looping Problem

A B C

0 1 2
Cost to C

What is B’s cost to C now?

79

Looping Problem

A B C

0 1 2
Cost to C

3

80

Looping Problem

A B C

0 1 2
Cost to C

3

direction

towards C

direction

towards C

81

Looping Problem

A B C

0 1 2
Cost to C

3 4

direction

towards C

direction

towards C

82

Looping Problem

A B C

0 1 2
Cost to C

3 4

5

direction

towards C

direction

towards C

83

Looping Problem

worse with high connectivity

Q Z B A C N M V

H

84

Split Horizon: one of several

optimizations

Don’t tell neighbor N you can reach D if you’d forward to D through N

A B C

85

Split Horizon: …but it won’t work

with loops of more than 2 nodes

A B

C

D

86

Link State Routing

• meet nbrs

• Construct Link State Packet (LSP)

– who you are

– list of (nbr, cost) pairs

• Broadcast LSPs to all rtrs (“a miracle occurs”)

• Store latest LSP from each rtr

• Compute Routes (breadth first, i.e., “shortest path”

first—well known and efficient algorithm)

87

A B C

D E F

G

6 2
5

1

2 1 2
2 4

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

88

Computing Routes

• Edsgar Dijkstra’s algorithm:
– calculate tree of shortest paths from self to each

– also calculate cost from self to each

– Algorithm:

• step 0: put (SELF, 0) on tree

• step 1: look at LSP of node (N,c) just put on tree. If

for any nbr K, this is best path so far to K, put (K,

c+dist(N,K)) on tree, child of N, with dotted line

• step 2: make dotted line with smallest cost solid, go

to step 1

89

Look at LSP of new tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)

90

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)

91

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)

E(6) G(3)

92

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(6) G(3)

93

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

94

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

95

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

96

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

97

Look at newest tree node’s LSP

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

98

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

99

Look at newest node’s LSP

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

A(7)

100

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)

D(5)

A(7)

101

We’re done!

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)

D(5)

A(7)

Another enhancement of link

state

• Pseudonodes

• Since routing algorithm is proportional to

the number of links

• If an Ethernet with 100s of nodes were

considered fully connected, the link state

database would be too large

102

103

Instead of: Use pseudonode

Pseudonodes

Designated Routers

• Elect a router to be the master of the link

• It names the pseudonode

– In IS-IS, a node’s ID is 7 bytes: 6 bytes of system ID

(usually the MAC address of one of its ports), plus an

extra byte. E.G., R1 is DR, names link R1.25

• All routers (including R1) claim a link to R1.25

• R1 (pretending to be the pseudonode), claims connectivity

to each of the routers on the link

104

So back to distributed algorithm

vs central fabric manager

105

Central Fabric Manager

• This has been deployed (e.g., ATM,

Infiniband)

• One place (“fabric manager”) collects

topology information, calculates paths,

distributes forwarding tables to all the

switches

106

Seems to me…

• Link state routing protocol will be more

responsive to topology changes than central

fabric manager…especially if link failure

affects path to fabric manager

• Route computation criteria can be changed

by modifying link costs

107

When does forwarding table get

filled in?

• Proactively

• When a flow starts

108

Proactively seems better

• Rather than paying latency to create entry

109

How do you manage a network?

Original vision:

– A management console translates “big” commands,

e.g.,“forward using this metric” or “traffic engineer this

path” into individual commands to switches

– Protocols define a MIB (management information base)

that says which parameters are readable, writeable,

what events alert management station

– Define a standard language to read/set parameters

remotely (e.g., SNMP)

110

Mystery (to me)

• Apparently that original vision degraded into often

remotely logging into each switch and doing CLI

(command line interface) commands

• Why? (proprietary features not defined in

MIB…vendor’s fault? Standards body fault? Need

new features (like atomic transaction?) in SNMP?

• If we define a new thing like SNMP, will things

degrade over time the same way? Is a new thing

easier than reviving SNMP/Netconf?

 111

New Topic: What is layer 2 vs

layer 3?

112

How the world should be…

• Layer 2 is supposed to be between

neighbors – not forwarded “at layer 2”

• Layer 3 is supposed to be forwarded

• And layer 3 should be allowed to get things

out of order

• And layer 4 should number things, and put

them back in order

113

Forwarding at layer 2 vs layer 3

• Extremely confusing, without knowing the

history of IP, Ethernet, TRILL, etc.

114

So…why are we forwarding

Ethernet packets?

• Ethernet was intended to be layer 2

• Just between neighbors – not forwarded

115

So…why are we forwarding

Ethernet packets?

• Ethernet was intended to be layer 2

• Just between neighbors – not forwarded

• What exactly is Ethernet?

116

Let’s start in the early 1980’s

• I was layer 3 architect for DECnet

• Layer 3 calculate paths, and forwarded

packets

• Layer 2 just marked beginning and end of

packet, and checksum

• …Then along came Ethernet

117

The story of Ethernet

118

119

Ethernet packet

data

Ethernet header: 6 byte addresses – strangely large…because

 it allows autoconfiguration

Plus stuff like protocol type and VLAN

dest source

The story of Ethernet

• CSMA/CD

• Spanning Tree

• TRILL

• Futures?

120

CSMA/CD Ethernet

• CSMA/CD…shared bus, peers, no master
– CS: carrier sense (don’t interrupt)

– MA: multiple access (you’re sharing the air!)

– CD: listen while talking, for collision

• Lots of papers about goodput under load

only about 60% or so because of collisions

• Limited in # of nodes (maybe 1000),

distance (kilometer or so)

121

But Ethernet hasn’t been

CSMA/CD for decades

122

How it evolved to spanning tree

• People got confused, and thought Ethernet

was a network instead of a link

– Link (layer 2) = nbr-nbr

– Network (layer 3) = forward along a path

• Built apps on Ethernet, with no layer 3

• Router can’t forward without the right

envelope

123

124

Problem Statement (from about
1983)

Need something that will sit between two Ethernets, and

let a station on one Ethernet talk to another

A C

Without modifying the endnode, or Ethernet packet, in any way

The basic concept

• Bridge just listens promiscuously, and

forwards to each other port when the ether

is free

• Learn (Source=S, input port). Once learned,

if see a packet with destination=S, know

where to forward it (rather than “all the

ports”)

• This requires a tree (no loops) topology

125

126

A C

D E

X J

X,C A

127

9 3

4

11
7

10

14

2
5

6

A

X

Physical Topology

128

9 3

4

11
7

10

14

2
5

6

A

X

Pruned to Tree

129

Basic Spanning Tree Algorithm

• Bridge (“DB” or “Designated Bridge”) that can

transmit “best Hello” on the link periodically

transmits a Hello (BPDU):

– Root ID (actually priority.ID)

– distance to Root

– DB ID (priority.ID)

– other stuff

• “Best Hello” is numerically smallest

– Root ID | distance | my ID | port ID

130

Finding cost to Root
(Root, cost, DB)

13,5,21 13,5,40

15,2,21 13,7,22

13,4,80

36
Root=?

cost=?

my-ID=?

131

Finding cost to Root
(Root, cost, DB)

13,5,21 13,5,40

15,2,21 13,7,22

13,4,80

36
Root=13

cost=5

my-ID=36

132

In tree: if DB or Root port
(Root, cost, DB)

13,5,21 13,5,40

15,2,21 13,7,22

13,4,80

36
Root=13

cost=5

my-ID=36

13,5,36 13,5,36

13,5,36

133

Algorhyme

I think that I shall never see
A graph more lovely than a tree.

A tree whose crucial property
Is loop-free connectivity.

A tree which must be sure to span
So packets can reach every LAN.

First the root must be selected,
By ID it is elected.

Least cost paths from root are traced,
In the tree these paths are placed.

A mesh is made by folks like me.
Then bridges find a spanning tree.

Radia Perlman

134

Bother with spanning tree?

• Maybe just tell customers “don’t do loops”

• But loops allow for backup paths

• And mistakes can be made…

• First bridge sold...

135

First Bridge Sold

A C

136

9 3

4

11
7

10

14

2
5

6

A

X

Problems with spanning tree: suboptimal paths,

Unused links

Why not just use IP routers?

• World has converged to IP as layer 3, and

it’s in the network stacks

137

Why not just use IP routers?

• IP is configuration intensive, moving VMs

disruptive

– IP protocol requires every link to have a unique

block of addresses

– Routers need to be configured with which

addresses are on which ports

– If something moves, its address changes

138

139

Layer 3 doesn’t have to work that
way!

• CLNP / DECnet...20 byte address
– Bottom level of routing is a whole cloud with the

same 14-byte prefix

– Routing is to 6 byte ID inside the cloud

– Enabled by “ES-IS” protocol, where endnodes
periodically announce themselves to the routers

14 bytes 6 bytes

Prefix shared by all nodes in large cloud Endnode ID

140

Hierarchy

One prefix per link (like IP) One prefix per campus

2*

25*

28*

292*

22*

293*

2*

CLNP

141

Use top 14 bytes to get to cloud

Use bottom 6

Bytes to route

Inside cloud

IP+Ethernet

142

Use IP address to get to cloud

Ethernet inside

cloud

Need ARP to find Ethernet

Address once you get to the

cloud

IP thinks cloud is a single

Link (“IP subnet”)

143

Worst decision ever

• 1992…Internet could have adopted CLNP

• Easier to move to a new layer 3 back then

– Internet smaller

– Not so mission critical

– IP hadn’t yet (out of necessity) invented DHCP, NAT,

so CLNP gave understandable advantages

• CLNP still has advantages over IPv6 (e.g., large

multilink level 1 clouds)

Ethernet looks like a single IP

link

• So Ethernet provides a large cloud in which

switches can autoconfigure, and nodes (e.g.,

VMs) can move around transparently

• But don’t want limitations of spanning tree

144

Next step in evolution: TRILL

145

TRILL

• TRansparent Interconnection of Lots of

Links

• Basic idea: Put Ethernet in another envelope

that acts more like a layer 3 envelope, and

can be routed

146

Note: TRILL is evolutionary

• Endnodes just think it’s Ethernet…no changes

• Even interworks with existing spanning tree

switches

• The more switches you upgrade to TRILL, the

better the bandwidth utilization

147

148

Basic TRILL concept

R7

R1

R3

R4

R6

R2

R5

a

c

Basic TRILL concept

• TRILL switches find each other (perhaps with

bridges in between)

• Calculate paths to other TRILL switches

• First TRILL switch tunnels to last TRILL switch

149

How does R1 know R2 is “last

switch”?

• Orthogonal concept to rest of TRILL

• R1 needs table of (destination MAC, egress

switch)

• Various possibilities

– Edge switch learns when decapsulating data, floods if

destination unknown

– Configuration of edge switches

– Directory that R1 queries

– Central fabric manager pushes table

150

Table of Endnodes

• (IP, MAC, egress nickname)

• Traditionally: flooding

– IP MAC done by flooding ARP

– MAC egress done by flooding

• But it doesn’t have to be that way

151

Alternatives

• Configuration of location of all endnodes

• Querying a directory rather than flooding when

talking to a new endnode

– Usually there is something (e.g., DHCP server) that

knows where everything is

– You could have mirrors of that

– It’s not a big enough database to worry about anything

fancy

– If something moves, directory can remember who

asked

152

Advantage of extra header

• Switches inside cloud don’t need to know about all the

endnodes…

– Forwarding table size of # of switches

• The outer header is like a layer 3 header, and can use all

the layer 3 techniques, e.g.,

– Hop Count

– Shortest paths

– Multiple paths (exploit parallelism)

– Traffic engineering

• Extra header has easy-to-look-up addresses (dense)

153

154

Run “Link State Protocol”

• meet nbrs

• Construct Link State Packet (LSP)

– who you are

– list of (nbr, cost) pairs

• Broadcast LSPs to all rtrs (“a miracle occurs”)

• Store latest LSP from each rtr

• Compute Routes (breadth first, i.e., “shortest path”

first—well known and efficient algorithm)

155

A B C

D E F

G

6 2
5

1

2 1 2
2 4

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

Specifically, IS-IS

• IS-IS was the protocol for DECnet/CLNP

• Very little has changed since 1980’s

• OSPF kind of copied it

• IS-IS better for TRILL because

– IS-IS runs on layer 2; does not depend on IP

– Its encoding is very flexible; add “TLV” fields

– Simpler, more scalable

156

157

Network of RBridges (TRILL

switches)

• All the RBridges know how to reach all the

other RBridges

• But don’t know anything about endnodes

158

Why link state?

• Since all switches know the complete

topology, easy to compute lots of trees

deterministically (we’ll get to that later)

• Easy to piggyback “nickname allocation

protocol” (we’ll get to that later)

159

Routing inside campus

• First RB encapsulates to last RB

– So header is “safe” (has hop count)

– Inner RBridges only need to know how to reach

destination RBridge

• Still need tree for unknown/multicast

– But don’t need spanning tree protocol –

compute tree(s) deterministically from the link

state database

160

Details

• What the encapsulated packet looks like

• How R1 knows that R2 is the correct “last

RBridge”

161

Encapsulated Frame

(Ethernet)

outer header TRILL header original frame

dest (nexthop)

srce (Xmitter)

Ethertype=TRILL

first RBridge

last RBridge

TTL

TRILL header specifies RBridges with 2-byte nicknames

What’s the outer Ethernet header

for?

• To work well with switches inside spanning

tree island

• In case there’s a shared link, to specify who

the next recipient is

162

Outer Ethernet Header on Shared

Links

163

R1 R2 R3 R4

S
D

16-bit TRILL switch

“nicknames”

• Allows 64,000 switches…many more

endnodes

• TRILL autoconfigures nicknames

• Allows simple forwarding table lookup

– Direct table lookup

– Don’t need associative memory, or hash, or

longest prefix match

164

Advantage of extra header

• Switches inside cloud don’t need to know

about all the endnodes…

– Forwarding table size of # of switches

• The outer header is like a layer 3 header,

and can use all the layer 3 techniques, e.g.,

– Shortest paths

– Multiple paths (exploit parallelism)

– Traffic engineering

165

166

2-byte Nicknames

• Saves hdr room, faster fwd’ing

• Dynamically acquired

– Choose unused #, announce in LSP

– If collision, IDs and priorities break tie

– Loser chooses another nickname

– Configured nicknames higher priority

• Is 64,000 switches enough?

Form network of TRILL switches

• TRILL switches find each other if:

– Directly connected with pt-to-pt

– Both connected to same Ethernet island

• Do “link state protocol” among TRILL

switches to calculate paths to other TRILL

switches

167

168

b

b

b

b

b b

b

T

T

T
T

T
T

T

T
T

T

169

b

b

b

b

b b

b

T

T

T
T

T
T

T

T
T

T

170

b

b

b
T

T

T
T

T
T

T

T
T

T

171

b

b
T

T

T
T

T
T

T

T
T

T

172

T

T

T
T

T
T

T

T
T

T

173

T1

T2

T
T

T
T

T

T
T

T

Note: only one

T must encap/decap

So T1 and T2 must

Find each other and

coordinate

174

How does R1 know that R2 is the

correct “last RBridge”?

• Currently….If R1 doesn’t, R1 sends packet

through a tree

• When R2 decapsulates, it remembers

(ingress RBridge, source MAC)

175

How does R1 know that R2 is the

correct “last RBridge”?

• Currently….If R1 doesn’t, R1 sends packet

through a tree

• When R2 decapsulates, it remembers

(ingress RBridge, source MAC)

• Note: If we’d used MPLS as encapsulation

header, we wouldn’t have that information

(1st RBridge) to learn from

Other possibilities

• Configuration of (MAC addresses, location) into

switches

• Directory listing (IP, MAC, switch location)

– Consulted by first switch, or hypervisor, or VM, or

application

– No reason endnode couldn’t encapsulate into TRILL

header, using switch’s nickname as “first switch” – or,

pretend to be a switch and get a nickname

176

Directory

• Could act as the DHCP server (knows (IP, MAC)

because it hands them out..can learn switch

location based on encapsulated DHCP request

• But what if MAC moves? Short DHCP leases?

– Or, there is a fabric manager that determines VM

moves…it will know and can tell directory

• Could remember who requested an entry, and tell

them if info changes

177

178

Use of “first” and “last” RBridge in

TRILL header

• For Unicast, obvious

– Route towards “last” RBridge

– Learn location of source from “first” RBridge

• For Multicast/unknown destination

– Use of “first”

• to learn location of source endnode

• to do “RPF check” on multicast

– Use of “last”

• To allow first RB to specify a tree

• Campus calculates some number of trees

TRILL and Multicast

• For spreading multicast traffic around,

campus computes several trees

• “Last TRILL switch” field in TRILL header

specifies which tree to send on

• Traffic filtered in the core based on VLAN,

and IP multicast addresses

179

Multiple trees for multicast

180

R1 specifies which tree

(yellow, red, or blue)

R1

Multiple trees for multicast

181

R1 specifies which tree

(yellow, red, or blue)

R1

Original Ethernet packet Which

tree

1st

switch

hops

Orthogonal concept

182

Recently, a bunch of similar

things invented

• NVGRE, VXLAN, …

183

Who encapsulates/decapsulates?

• Could be

– first switch

– Or hypervisor

– Or VM

– Or application

• For “evolution”, switch

• Having endnode do it saves work for

switch, easier to eliminate stale entries
184

How to compare

• “Inner” packet based on flat address space

– IP or Ethernet…

• IP header bigger, addresses smaller, well-known

how to get unique Ethernet addresses without

configuring

• “Outer” header location dependent

– TRILL header small, nickname; simple

forwarding lookup

185

186

Inside:

Flat address space

Ethernet vs IP

Ethernet bigger

addresses, smaller

header

Outer header: TRILL is 6 bytes, autoconfigured, vs

IP+UDP/GRE+stuff (VXLAN/NVGRE)

What does encapsulation header

address?

• Last switch?

– Smaller forwarding tables

– Last switch has to look at inner header to know

where to forward

• Output port of last switch?

– Can avoid making forwarding tables bigger if

there is a fixed hierarchy:

• Last switch | Port on last switch

187

Extensions

• Expanding the number of VLANs (called

“fine-grained labels) to 24 bits (actually,

that’s done now)

• IS-IS hierarchy

– Various proposals for nicknames:

• Unique nicknames: (area | nickname)

– Each “area” gets a block of nicknames

• Aggregated Nickname: Rewrite nickname field at

level 1/level 2 boundary

188

189

How aggregated nicknames work

R2

R3
R1(27)

S

Rx

area 15961 area 15918

Rb
Rc Rd

Re

Rk

R4(44)

D

S transmits packet to D

R1 encapsulates with TRILL header

 ingress=27, egress=15918

R2 replaces ingress with 15961

R3 replaces egress with 44

190

How aggregated nicknames work

R2

R3
R1(27)

S

Rx

area 15961 area 15918

Rb
Rc Rd

Re

Rk

R4(44)

D

S transmits packet to D

R1 transmits ingress=27, egress=15918

R2 transmits ingress=15961, egress=15918

R3 transmits ingress=15961, egress=44

191

What if D is unknown?

• If unknown by R2, need to do multi-area

multidestination frame

• If R1 did know the right area, but R3

doesn’t know D, then R3 needs to turn it

into “unknown unicast” within D’s area

Note: TRILL is evolutionary

• Endnodes just think it’s Ethernet…no changes

• Even interworks with existing spanning tree

switches

• The more switches you upgrade to TRILL, the

better the bandwidth utilization

• This could have been implemented by a single

vendor, without standardizing

192

193

Algorhyme v2

I hope that we shall one day see
A graph more lovely than a tree.

A graph to boost efficiency
While still configuration-free.

A network where RBridges can
Route packets to their target LAN.

The paths they find, to our elation,
Are least cost paths to destination.

With packet hop counts we now see,
The network need not be loop-free.

RBridges work transparently.
Without a common spanning tree.

Ray Perlner

Advantage of CLNP vs

IP+TRILL

• No need for ARP: no “layer 2 address”. It’s

all part of layer 3

194

Some advantages of IP + TRILL

vs CLNP

• Easier forwarding lookup inside bottom

layer (16 bit nicknames)

• Smaller forwarding table in inner switches

(table size # of switches rather than

endnodes)

• Ability to multipath multicast

• VLANs

195

New concept: Self-Stabilization

196

New concept: Self-Stabilization

• Even if glitches occur (e.g., sick switch

injects bad messages), once bad nodes get

disconnected, network should return to

normal

197

New concept: Self-Stabilization

• Even if glitches occur (e.g., sick switch

injects bad messages), once bad nodes get

disconnected, network should return to

normal

• Important because unlike PCs, networks

don’t have a “restart” button

198

Rant

• Windows 8 did not get rid of of “restart”!

• They just hid it…

– Swoop gesture from right

– Touch “settings”

– Touch “power”

– Voila! There’s the restart button!

199

Back to self-stabilization

• Seems easy…

• Two examples of non-self-stabilizing

protocols

– Original ARPANET

– Spanning tree

200

201

Broadcasting LSP

• Can’t depend on routing info being correct

• Basic idea is flooding

– send to every nbr except from which LSP rcv’d

• Flooding is exponential, but we can do

better than that since we store LSPs, and

only flood them the first time we see them

• How do you tell if an LSP is newer than the

stored one?

202

Comparing LSPs

• Different from what’s in database? Which is

newer?

– most recently received?

– globally synchronized clocks

– local battery-backup clock

– sequence numbers

• wrap-around with partitions, restarts

– sequence number plus age field

203

Sequence Number Handling

• If rcv LSP from Fred through neighbor N:

– compare sequence number with what’s in

database for Fred.

– If rcv’d one bigger

• overwrite database

• flood to all nbrs except Fred.

– Else ignore

204

Age Field

• source sets age to MAX-AGE (64 seconds,

3 bit field, units of 8 seconds)

• decrement age after hold LSP for 8 seconds)

• if age=0, “too old”, don’t propagate

• Generate new LSP within MAX-INT (60

seconds)

• When starting, wait RESTART-TIME (90

seconds)

205

Arithmetic in circular space

x

>x

<x

206

ARPANET disaster

• symptom: net didn’t work

• how do you diagnose and manage a

network?

• Note: these guys were really really lucky!

• What had happened: Fred, a sick router,

generate bad LSPs before dying, with

sequence numbers x, y, z

207

ARPANET disaster

x

y

z

208

What now?

• Networks don’t have on/off switches

• First crash and reload BBN router

• Still broken---examine core dump

• Realize the problem

• Create patched code to ignore LSPs from Fred

• One by one, crash and load rtrs with patch

• One by one, load rtrs with real code again

• Hope it never happens again by accident (or on

purpose!)

209

So how do you fix a broken net?

• Patched version of code that ignore LSPs

from Fred

• One by one crashed systems (not easy!) and

reloaded with patched code

• Only after all routers reloaded, can they be

reloaded with correct version again

2nd example: Spanning tree

Protocol

210

2nd example: Spanning tree

Protocol

• Forwarding Ethernet packets is really

dangerous

– No hop count

– Exponential proliferation of packets on shared

links

211

When should you use a link?

• In layer 3, if you hear “I’m still here”

messages from a neighbor

– Otherwise you do NOT use the link

212

When should you use a link?

• In layer 3, if you hear “I’m still here”

messages from a neighbor

– Otherwise you do NOT use the link

• In contrast, with spanning tree, if you do

NOT hear from a “more qualified” neighbor

bridge, you assume you must forward onto

the link

213

So…suppose you can’t keep up

with wire speed

• You throw away incoming packets before

even checking if they are spanning tree

messages

• You might throw away too many from your

neighbor…and conclude you’re the only

bridge on the link!

214

So…suppose you can’t keep up

with wire speed

• You throw away incoming packets before

even checking if they are spanning tree

messages

• You might throw away too many from your

neighbor…and conclude you’re the only

bridge on the link!

• If you couldn’t keep up with incoming

traffic before, wait until there is looping

traffic…with no hop count!

215

In my defense

• My spec (for Digital) said “You must

engineer your bridge to be able to process

all incoming messages”

• But IEEE took that out

216

Topic if time

217

Data: Making it be there when you want

it, and go away when you want it gone

Radia Perlman

(radia@alum.mit.edu)

Problem

• Traditional tradeoff between

– Robust recovery after disaster: make lots of copies

– Assured delete: need to find all copies and delete them

• We will simultaneously solve both problems:

Allow robust recovery, and assured delete

• Paper: “File System Design with Assured

Delete”, NDSS 2007, Radia Perlman

219

Note

• This is about storage in a cloud or file server

• Once the file is supposed to be gone (from the

cloud/server) it will be unrecoverable (from the

cloud/server or any backups that the cloud/server

keeps)

• But this isn’t “DRM”. If an authorized client

machine accesses the data and stores it in the

clear, or prints a copy…this doesn’t solve that

220

This talk

• Two types of assured delete

– Expiration date

– On-demand, individual files

• Both are simple and practical

• But the on-demand is a bad idea! (I’ll

explain why, after explaining how to do it)

221

Expiration time

• When create data, put (optional) “expiration

date” in metadata

• After expiration, file must be unrecoverable,

even though backups will still exist

222

Obvious approach

• Encrypt the data, and then destroy keys

• But to avoid prematurely losing data, you’d

have to make lots of copies of the keys

• Which means it will be difficult to ensure

all copies of backups of expired keys are

destroyed

223

First concept: Encrypt all files with same

expiration date with the same key

224

File system with Master keys

Master keys

S1 Jan 7, 2013

S2 Jan 8, 2013

S3 Jan 9, 2013

…

file

Exp 01/08/13

{K}S2

Encrypted

With K

Master keys: Secret keys (e.g., AES)

generated by file system

Delete key upon expiration

225

How many keys?

• If granularity of one per day, and 30 years

maximum expiration, 10,000 keys

226

So…how do you back up the master

keys?

227

Imagine a service: An

“ephemerizer”

• creates, advertises, protects, and deletes

public keys

• “ephemerize keys” on backup by encrypting

with ephemerizer public key

• To recover from backup: file system asks

Ephemerizer to decrypt

228

Ephemerizer publicly posts

Jan 7, 2013: public key PJan7of2013
Jan 8, 2013: public key PJan8of2013
Jan 9, 2013: public key PJan9of2013

Jan 10, 2013: public key PJan10of2013

etc

One permanent public key P certified through PKI

Signs the ephemeral keys with P

229

File system with Master keys

Master keys

S1 Jan 7, 2013

S2 Jan 8, 2013

S3 Jan 9, 2013

…

file

Exp 01/08/13

{K}S2

Encrypted

With K

Master keys: Secret keys (e.g., AES)

generated by file system

230

Backup of Master Keys
Master keys

S1 Jan 7, 2013

S2 Jan 8, 2013

S3 Jan 9, 2013

…

Ephemerizer keys

P1 Jan 7, 2013

P2 Jan 8, 2013

P3 Jan 9, 2013

… Nonvolatile storage

{S1}P1, Jan 7, 2013

{S2}P2, Jan 8, 2013

{S3}P3, Jan 9, 2013

…

file

Exp 01/08/13

{K}S2

Encrypted

With K Encrypted with G

Sysadmin secret

231

Backup of keys

Notes

• Only talk to the ephemerizer if your hardware with

master keys dies, and you need to retrieve master

keys from backup

• Not every time you open a file!!

• Ephemerizer really scalable:

– Same public keys for all customers (10,000 keys for 30

years, one per day)

– Only talk to a customer perhaps every few years…to

unwrap keys being recovered from backup

232

But you might be a bit annoyed at this

point

233

But you might be a bit annoyed at this

point

• Haven’t we simply pushed the problem onto

the ephemerizer?

• It has to reliably keep private keys until

expiration, and then reliably delete them

234

Two ways ephemerizer can “fail”

• Prematurely lose private keys

• Fail to forget private keys

235

The reason why it’s not just pushing the

problem

• We will allow an ephemerizer to be flaky,

and lose keys

• An honest ephemerizer should not make

copies of its ephemeral private keys

• So…wouldn’t it be a disaster if it lost its

keys when a customer needs to recover

from backup?

236

The reason why it’s not just pushing the

problem

• You can achieve arbitrary robustness by

using enough “flaky” ephemerizers!

– Independent ephemerizers

– Independent public keys

237

Use multiple ephemerizers!
Master keys

S1 Jan 7, 2013

S2 Jan 8, 2013

S3 Jan 9, 2013

…

Ephemerizer keys

P1 Jan 7, 2013

P2 Jan 8, 2013

P3 Jan 9, 2013

…

Q1 Jan 7, 2013

Q2 Jan 8, 2013

Q3 Jan 9, 2013

…

Nonvolatile storage

{S1}P1, {S1}Q1 Jan 7, 2013

{S2}P2, {S2}Q2 Jan 8, 2013

{S3}P3, {S3}Q3 Jan 9, 2013

…

file

Exp 01/08/13

{K}S2

Encrypted

With K Encrypted with G

Sysadmin secret

238

Backup of keys

Summarizing

• Only need ephemerizer after a disaster

• Ephemerizer really scalable: millions of
customers; rarely talks to any of them

• Ephemerizer only needs 10,000 public keys
(one per day, 30 years) regardless of number of
customers

• Easy to build an ephemerizer; generate private
keys and do decryptions in protected hardware,
never making copies

239

What if ephemerizer doesn’t destroy

private key when it should?

• Then the file system can use a quorum

scheme (k out of n ephemerizers)

– Break master key into n pieces, such that a

quorum of k can recover it

– Encrypt each piece with each of the n

ephemerizers’ public keys

240

Asking ephemerizer to decrypt

• Cool protocol for asking the ephemerizer to

decrypt

– Which gives no information to the ephemerizer!

241

What we want to accomplish

File system Ephemerizer

Please decrypt {Si}Pi with key ID i

Si

Has {Si}Pi

use private key i

242

What we want to accomplish

File system Ephemerizer

Please decrypt {Si}Pi with key ID i

Si

Has {Si}Pi

use private key i

But we don’t want the Ephemerizer to see Si

243

We’ll use “blind decryption”

• Same basic idea as blind signatures

• FS wants Ephemerizer to decrypt {Si}Pi with its

private key #i

– … Without seeing what it is decrypting

• FS chooses inverse functions blind/unblind (B, U)

• encrypts (blinds) with Blind Function, which

commutes with Ephemerizer’s crypto

• Then applies U to unblind

244

Using Blind Decryption

File system Ephemerizer

Please decrypt B{{Si}Pi} with key ID i

B{Si}

Has {Si}Pi

use private key i

File system applies U to get Si

Ephemerizer only sees B{Si}

Invents functions (B,U) just for this conversation

245

Non-math fans can take a nap

246

For you math fans…

247

Quick review of RSA

• Public key is (e,n). Private key is (d,n),

where e and d are “exponentiative inverses

mod n”

• That means Xed mod n=X

• Encrypt X with public key (e,n) means

computing Xe mod n

248

Blind Decryption with RSA,

BD’s RSA PK=(e,n), msg=M

Alice BD

wants to decrypt Me mod n

chooses R, computes Re

Me Re mod n

applies (d,n)

MedRed

M R mod n

divides by R mod n to get plaintext M

249

Other functions work

• For instance, there’s a Diffie-Hellman

version that works with elliptic curves

• But for intuition, enough to see one

function…

250

Properties of our protocol

• Ephemerizer gains no knowledge when it is

asked to do a decryption

• Protocol is really efficient: one IP packet

request, one IP packet response

• No need to authenticate either side

• Decryption can even be done anonymously

251

OK, non-math fans can wake up now

252

Because of blind decryption

• The customer does not need to run its own

Ephemerizers, or really trust the

Ephemerizers very much

• Ephemeral key management can be

outsourced

253

Running an ephemerizer

• A customer could run some of its own

ephemerizers—they should be fairly inexpensive

and easy to manage

• But a customer might not be able to have enough

of them in enough geographic locations for true

robustness during disasters

• So it’s nice to use really remote ones if necessary

254

Outer encryption on ephemerized backup

keys

• We need a global secret G

• Otherwise, anyone that got the encrypted

backups could ask the Ephemerizer to

decrypt

• G could be something like a sysadmin

password, held in the head of multiple

system administrators

255

To recover from backup

• To retrieve the state of the file system after

a disaster you need:

– G

– The encrypted backups of the keys

– The encrypted backups of the data

– Help from the ephemerizer

256

Interaction with Ephemerizer

• Only need to bother Ephemerizer once after

a crash, for each expiration time (i.e.,

10,000 decryptions)

• Rather than every time file system opens a

file

• But we can actually make it only one

decryption after a crash!

257

Another optimization

• Since the S’s are in a sequence…

• Make them derivable from each other, like

with a one-way hash (or have file system

store each successive S encrypted with

previous S)

• That way, after a crash, only have to talk to

Ephemerizer once!

258

Sometimes you don’t know when you

want to delete a file

259

Examples

• Company severs relations with a client; destroys

all files

– Keys can be nested; use time-based keys in that client’s

folder

• Being sued; not allowed to delete anything; make

makeup with custom key, then destroy custom key

after suit done; key expirations will revert to time

• Spy: ship captured; tell ephemerizer not to decrypt

with custom key

260

Custom Keys

• The ephemerizer’s time-based key can be

shared by many clients

• With custom keys, you need to have the

ephemerizers keep a key for each of your

custom classes for you, so you can tell it

when to delete it (or when to apply special

authorization to use it for decryption)

261

Custom Keys

• Hopefully there would be a manageable

number of these

262

Note: This isn’t DRM!

• DRM requires tamper-proof reader

• Ephemerization does not make DRM easier

or harder

263

A subtle enhancement

• What if you fire system admin Fred?

• He might be able to find a backup of your
keys, and he knows G

• Solution: Ephemerizer’s key for Jan 1 isn’t a
single key, it’s a family of keys, some function
of

– file system owner name

– Advertised Ephemerizer parameters for that date’s
“public key”

264

Name-based public keys

• To “ephemerize” “Radia”’s January 1 key, take

the ephemerizer’s advertised value P, parameterize

it with “Radia” to get a public key PRadia/Jan1

• Encrypt with public key PRadia/Jan1

• If you need ephemerizer to decrypt, you have to

also prove you authorized to speak for “Radia”

• That credential can be revoked through the PKI

265

Name-based Public Keys

File system Ephemerizer

Please decrypt {Si}P(i,”name”) with key (#i, “name”)

Proof I am authorized for file system “name”

Si

Has {Si}P(i,”name”)

use private key (i,name)

266

To reduce slide clutter I left out

blinding

• But of course you still need blinding

• In addition to being able to parameterize a

key pair with a name

267

What functions work?

• The math of IBE (identity based encryption)
(with separate “domain parameters” for each
date)

• The Diffie-Hellman blindable math we omitted
from these slides

• RSA variant which probably works…no
known flaws (by me)…but easiest to
explain…and maybe one of you can prove
whether it is secure

268

Non-math fans can take a nap

269

RSA-based key blindable

parameterizable families

• Jan 1 “public key” isn’t (e,n): it’s just “n”

• Ephemerizer advertises: (date, n)

• The RSA encryption key “Radia” uses for that

date is (public exponent=h(“Radia”), n)

• Sh(“Radia”) mod n

• The private key (known to the Ephemerizer) is

knowledge of the factors of n (which enables the

ephemerizer to compute exponentiative inverses

mod n)

 270

Blind Decryption with

parameterized RSA

Alice Eph

wants to decrypt Mh(“Radia”) mod n

chooses R, computes Re mod n (where e=h(“Radia”)

Mh(“Radia”) Rh(“Radia”) mod n, “I’m Radia”, proof I’m Radia

computes d

MedRed

M R mod n

divides by R to get plaintext M

271

OK, non-math fans can wake up now

272

Another interesting (I hope) issue

• How to build an ephemerizer out of a dirt-cheap

smart card

– With limited storage, but attached to general purpose

computer

• Smart card remembers two secret keys: current

one and “next one”: Kn and Kn+1

• It generates public key pairs, encrypts the private

key with Kn, and stores it on computer

273

How to forget one of the private

keys

• Read in each private key (except the one

you want to delete), one by one

• Decrypt with Kn

• Encrypt with Kn+1

• Store {S}Kn+1

• Forget Kn

• Generate Kn+2

274

New (small) topic

275

What if laws keep changing?

• Rather than file system keeping track of law

that says this type of file must be retained

for n years

• Have ephemerizer key based on (creation

date, legal class) rather than expiration date

• Have ephemerizer destroy private key at the

appropriate time

276

What if you get sued?

• You aren’t allowed to delete anything until the suit

resolves

• So, you ask each ephemerizer to make you a (single)

custom key (so if 3 ephemerizers, public keys P,Q,Z)

• You do a backup of all the (unexpired) master keys,

“ephemerized” with P, Q, Z.

• After the suit is resolved, tell the ephemerizers to discard

the private keys P, Q, Z.

• And the master keys go back to the original expirations

277

People kept wanting “on-demand”

delete

• And I kept arguing that it was not useful,

and wouldn’t be scalable

278

People kept wanting “on-demand”

delete

• And I kept arguing that it was not useful,

and wouldn’t be scalable

• But then I realized how to do it

279

People kept wanting “on-demand”

delete

• And I kept arguing that it was not useful,

and wouldn’t be scalable

• But then I realized how to do it

• And think it’s a really bad idea

280

People kept wanting “on-demand”

delete

• And I kept arguing that it was not useful,

and wouldn’t be scalable

• But then I realized how to do it

• And think it’s a really bad idea

• And it’s useful to see both how to do it, and

why it’s a bad idea

281

On demand delete

282

On-demand delete

• The previous design assumes

– Key manager keeps one key for each expiration time

– At file creation, you have to know its expiration

• What if you want to do on-demand delete?

• But then you wouldn’t be able to share keys…if

you throw away a key, all files encrypted with the

same key go away

• On the surface, seems much harder

283

Ephemerizer state

• Needs to keep two public keys for each

customer file system

– current public key

– previous public key

284

File system with F-table

Volatile storage

F
1
, F

2
, F

3
, F

4
,

F
5
, …..

…..F
million

file

Ptr to F-table

Encrypted

With F
2

F-table

285

File system with F-table

Volatile storage

F
1
, F

2
, F

3
, F

4
,

F
5
, …..

…..F
million

file

Ptr to F-table

Encrypted

With F
2

F-table

Modify F-table when you assure-delete a file

Or create a new file

F-table has key for each file…if a million files, a million keys

286

File system with F-table

Volatile storage

F
1
, F

2
, F

3
, F

4
,

F
5
, …..

…..F
million

Ephemerizer keys

For client X

Pi-1

Pi

…

 For client X

Qi-1

Qi

…

Local NV storage

{K}Pi, {K}Qi

file

Ptr to F-table

Encrypted

With F
2

F-table encrypted with K

Remote NV storage

{K’}Pi-1, {K’}Qi-1

Previous version of

F-table encrypted with K’

F-table K

287

In theory…

• Ephemerizer could roll over keys on a

schedule

• But then a week-long power failure could

be a disaster

288

So what’s wrong?

289

My concern

• Suppose you change P’s every week

• Suppose you find out that the file system

was corrupted a month ago

• And that parts of the F-key database were

corrupted, without your knowledge

• You can’t go back

290

Why isn’t pre-determined expiration

time as scary?

• If file system is not corrupted when a file is

created, and the file is backed up, and the S-

table is backed up, you can recover an

unexpired file from backup

• Whereas with the on-demand scheme, if the

file system gets corrupted, all data can get

lost

291

Summary

• Use multiple independent ephemerizers

with independent keys; ephemerizer keys

need not be backed up

• Keys can be nested (expiring keys in a

folder with custom keys)

• Not DRM (completely orthogonal to DRM)

• Time-based is probably the most useful

292

Back to main presentation

293

Another topic

• An example of where adopting something

from a different standards organization was

the wrong thing

294

Example: PKIX (certificate

format)

295

First some background

296

What’s a certificate?

• Public keys

– Two numbers (public, private)

– If Bob knows Alice’s public key, and Alice knows her

private key, she can prove to Bob she is Alice

• How does Bob know Alice’s public key?

• Bob trusts something known as a CA

(Certification authority) to sign a statement that

“Alice’s public key is 297483927489”

297

Key Distribution - Public Keys

Alice Bob

[“Alice”, public key=342872]CA

Auth, encryption, etc.

[“Bob”, public key=8294781]CA

298

Certificate Format

• So, a certificate maps a name to a public

key

• IETF’s PKIX working group decided to

base certificates on X.509 (an ITU standard)

• Why should it matter?

299

The problem with X.509

• X.509 maps an X.500 name to a public key

• What’s an X.500 name?

• A perfectly reasonable hierarchical

namespace
– Example: C=countryname, O=organizationname,

OU=organizationunitname, CN=commonname

300

So, X.509 would have been

fine…

• If Internet protocols (and Internet users)

were using X.500 names

• But they don’t…they use DNS names like

labs.examplecompanyname.com

301

• So what good is something that maps some

string that the application (and user) is

unfamiliar with, to a public key?

302

Example

• Human types “foo.com” (a DNS name

embedded in a URL)

• Site sends certificate with an X.500 name

303

Example

• Human types “foo.com” (a DNS name

embedded in a URL)

• Site sends certificate with an X.500 name

– C=US

– O=AtticaPrison

– OU=DeathRow

– OU=ParticularlyVilePrisoners

– CN=Horrible Person

304

Example

• Human types “foo.com” (a DNS name

embedded in a URL)

• Site sends certificate with an X.500 name

• One strategy used by some

implementations: Ignore name in certificate,

but validate the math of the signature

305

Example

• Human types “foo.com” (a DNS name

embedded in a URL)

• Site sends certificate with an X.500 name

• One strategy used by some

implementations: Ignore name in certificate,

but validate the math of the signature

• What security does that give?

306

Example

• What security does that give?

• The warm fuzzy feeling that SOMEONE

paid Verisign for a certificate…

307

There are (at least) 3 kludgy ways of

encoding a DNS name into a PKIX cert

• Invent a new category “DC” instead of “C” or
“O” or “OU”, for “domain component”, and
encode something like labs.intel.com as

– DC=com; DC=intel; DC=labs

• Use the “alternate name” field in the PKIX
certificate to put the DNS name

• Use the bottom of the X.500 name (the
“common name”; “CN=“) to put in the DNS
name

308

Are 3 ways better than one?

• No!!!

• Suppose a CA enforces that you own the

DNS name in the “common name” field,

but allows you to put whatever you want

into the alternate name

• This is a security problem waiting to happen

309

Human names: Another difficult

problem

• I’d love humans to be authenticated with

certificates and keys

• But what do we do for names?

• If you work at a big company, you likely

have the problem of figuring out which

John Smith you want to talk to….

– john.smith or johnny.smith, or john.q.smith

310

And all the math in the world won’t

help us really know what/who to

trust
• Imposters have posed as airline pilots,

doctors

• Or even had proper credentials (e.g., Bernie

Madoff)

• And we don’t tend to search for things by

DNS names anyway…

311

Another topic

312

Another topic

• “The Internet is great for keeping everyone

informed”

313

Another topic

• “The Internet is great for keeping everyone

informed”

• Alternative view: Too many choices allows

us to focus on just what we want to hear

314

Another topic

• “The Internet is great for keeping everyone

informed”

• Alternative view: Too many choices allows

us to focus on just what we want to hear

• Also, anyone can say anything, and will

have an audience who will believe them

• Actually scary…polarizes society

315

Some things that can’t possibly work

316

Some things that can’t possibly work

….but do!

317

Some things that can’t possibly work

….but do!

• Wikipedia

318

Some things that can’t possibly work

….but do!

• Wikipedia

• Internet search

319

Some things that can’t possibly work

….but do!

• Wikipedia

• Internet search

• Online shopping

320

Some things that can’t possibly work

….but do!

• Wikipedia

• Internet search

• Online shopping

• Ebay

321

And something that should be

easy…

• User Authentication

322

It’s common to have to trade off

usability vs security

323

It’s common to have to tradeoff

usability vs security

usability

security

324

It’s common to have to tradeoff

usability vs security

• But we’ve managed to make user

authentication both

– Maximally insecure, and

– Maximally unusable

325

Unusable and insecure!

usability

security

326

User authentication

• Every site has different rules for usernames

and passwords

– At least n characters, no more than x characters,

must have at least one letter, one number, one

special character, must not contain anything but

letters and numbers, ….

327

User authentication

“Sorry, but your password must contain an

uppercase letter, a number, a haiku, a gang

sign, a hieroglyph, and the blood of a virgin.”

(unknown author)

328

Annoying rules that add nothing to

security

• Must change password at least every n days

• Must not reuse a password

• If you forget your password, you can’t reset

it to the one you were using (that you

temporarily forgot)

• These sorts of rules actually lower security!

• But they are written into “best practices”, so

companies must do them
329

User authentication

• I do not want to hear…

330

User authentication

• I do not want to hear…

“We need better user training”

331

Humans

• “Humans are incapable of securely storing high-quality
cryptographic keys, and they have unacceptable speed
and accuracy when performing cryptographic
operations. They are also large, expensive to maintain,
difficult to manage, and they pollute the environment.
It is astonishing that these devices continue to be
manufactured and deployed, but they are sufficiently
pervasive that we must design our protocols around
their limitations.”

– Network Security: Private Communication in a

Public World

Single Signon

• That is how things ought to work

• “The Network is the Computer”

• One strategy (I don’t like) is an “identity

provider”

– Alice authenticates to identity provider X

– When Alice wants to talk to server S, she

requests X to send her a short term “token”

• “X vouches that whoever sends you this letter is

Alice”

333

Problems with Identity Provider

Approach

• Security problems
– (Identity Provider can impersonate you anywhere)

– Stolen token allows thief to impersonate you

• Trust problem (is there really one IdProv that
will be trusted by all users, all servers?)

• Availability problem (if it is down, user can’t
talk to anyone)

• Privacy problem (IdProv knows every site you
visit)

334

Is there a solution?

• I think so…

• For instance…

• User has smart card with private key

• When user sets up an online account,

instead of providing “username/password”,

sends public key

• You don’t need any certificates!

335

Most of the time…

• All you are proving is that you are the same

user that created the account

336

Things to consider

• User needs to be able to use multiple

different devices

• If smart card is stolen, has to be unusable by

thief, and replaceable to real person

• I think these can be solved

337

Just a bit of ranting…

338

Buying something

• Scenario: Buy something from a merchant

you haven’t bought from recently

• All prepared with your info, credit card, etc.

• It asks you for your email address…

339

You’re a returning user!

• Type your username and password!

340

You’re a returning user!

• Type your username and password

• Of course you can’t remember it, so…

341

You’re a returning user!

• Type your username and password

• Of course you can’t remember it, so…

– you manage to find “recover username”

342

You’re a returning user!

• Type your username and password

• Of course you can’t remember it, so…

– you manage to find “recover username”

– suddenly you are in a Monty Python movie

• Answer the following questions three:

– Telephone number

– Address

– Mother’s maiden name

343

My wish for a New Rule

• It should be no more onerous to be a

returning user than a new user

344

Security questions for

password/username recovery

• Favorite sports team

• 2nd grade teacher’s name

• Pet’s name

• Father’s middle name

• My middle name

345

My Wish for a New Rule

• Security questions must be specifiable by

the user

• I’d say “or selectable from a very large list”,

but I’m sure they can come up with an

arbitrarily long list of questions I can’t

answer

346

Keeping customer information

• I do not want to do “single click ordering”

• I do not mind typing in my address

• I do not mind typing in my credit card

number

• Merchants insist on keeping all of this

information

• And eventually this information gets stolen

347

My Wish for a New Rule

• After a merchant is paid, any subset of

information about a customer (including all

of the information) must be expunged by

the merchant at the customer’s request

348

Some security research I’ve done

• Assured delete

– The ability to store things in a cloud or on a

server with an “expiration date”

– The cloud can make arbitrary many copies so

the data doesn’t get accidentally lost

– After the expiration date, it’s unrecoverable,

even though the backups still exist

– No performance overhead, easy to manage,

easy to build
349

Some security research I’ve done

• Networks resilient to malicious failure of
trusted components
– Malicious switch can lie in routing alg, flood the

network with garbage, do everything perfectly but
discard data from one source, …

– My thesis (1988) showed how to build a modest
sized network (say 1000 nodes), that guaranteed 2
nodes can communicate provided at least one
honest path connects them

• Recent work: Extending the guarantees to
large hierarchical networks

350

Another topic…infected

machines
• There are so many ways to get your machine

infected

• In the old days…this was done by bored teenagers
looking for attention

• Now it’s criminals

– Real business for controlling bots and launching DDOS
attacks (Distributed Denial of Service), sending spam,
having lots of computation for password cracking, etc.

– Criminals don’t want you to know your machine is
infected

351

Protocol Folklore

• Obvious stuff everyone gets wrong

352

353

Version Number

354

What’s a Version Number?

• Philosophical question:

– what is “new version” vs “new protocol”?

355

What I think makes sense

• Envelope says what the protocol is (how to

parse the packet)

– Ethernet: Ethertype

– IP: Protocol Type

– TCP/UDP: port

356

Ethernet Protocol Type

data dest source Protocol

Type

357

What I think makes sense

• Envelope says what the protocol is (how to

parse the packet)

• If differentiate based on protocol type, then

it’s a new protocol

• If differentiate based on version number,

then it’s a new version of the same protocol

 If differentiate based on version

number

• You can’t just say “write this value into this

field

• You have to say “Look at the version

number, and if it’s not your version, then

drop the packet”!

358

359

Version #

• Nobody seems to do this right

• IP, IKEv1, SSL don’t say what to do if

version # different. Most implementations

ignore version number field

• SSL v3 moved version field!

360

Parameters

• Minimize these:

– someone has to document it

– customer has to read documentation and

understand it

• How to avoid

– architectural constants if possible

– automatically configure if possible

361

Settable Parameters

• Make sure they can’t be set incompatibly

across nodes, across layers, etc. (e.g., hello

time and dead timer)

• Make sure they can be set at nodes one at a

time and the net can stay running

362

Example: Hello Timer

• IS-IS

– pairwise parameters reported in “hellos”

– So you know what to expect from that neighbor

• OSPF

– Kind of copied IS-IS, but decided…

363

Example: Hello Timer

• IS-IS

– pairwise parameters reported in “hellos”

– So you know what to expect from that neighbor

• OSPF

– Kind of copied IS-IS, but decided…

– Refuse to talk if timers not identical with

neighbor’s!

Latency

• Store-and-forward vs cut-through

• Cut through can start after the forwarding

decision is made

• What field do you need to see for

forwarding decision?

364

365

IPv4 header

366

IPv6 header

Parting thoughts

• Don’t believe anything about “technology

X” unless there is a plausible inherent

reason for it

• Don’t get carried away by buzzwords

• Know what problem you’re solving before

you start on the solution

367

Thank you!

368

