

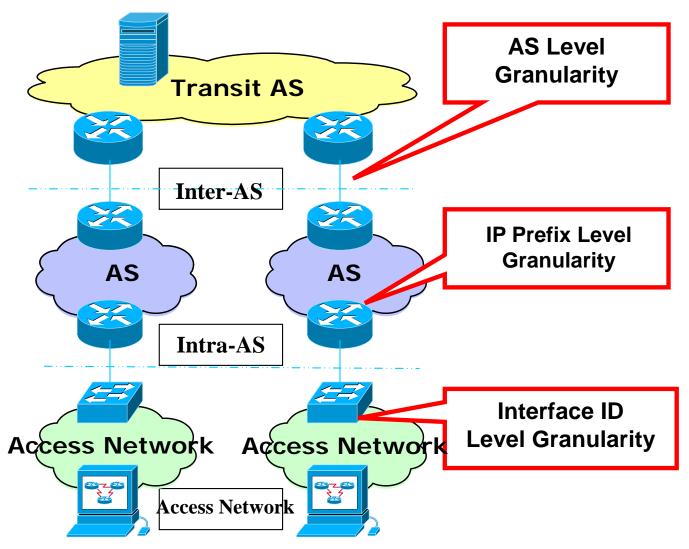
1

Source Address Validation: from the Current Network Architecture to SDN-based Architecture

Jun Bi

Tsinghua University/CERNET GFI 2013 Nov. 20, 2013

Content

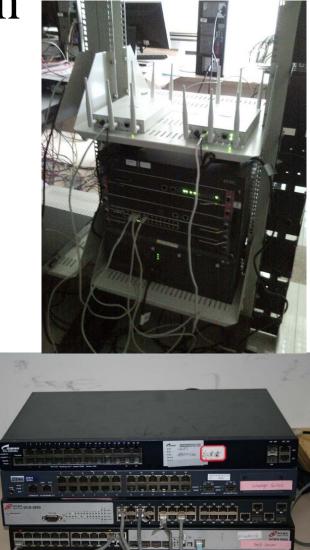

- Source Address Validation Architecture (SAVA)
 - SAVA solutions
 - SAVA Implementations
 - SAVA deployment at CNGI-CERNET2
- Leveraging SDN to enhance Source Address Validation
 - Access: Software Defined SAVI
 - Intra-AS: SDN based CPF
 - Inter-AS: Collaborative On-demand Spoofing Defense
- Conclusion

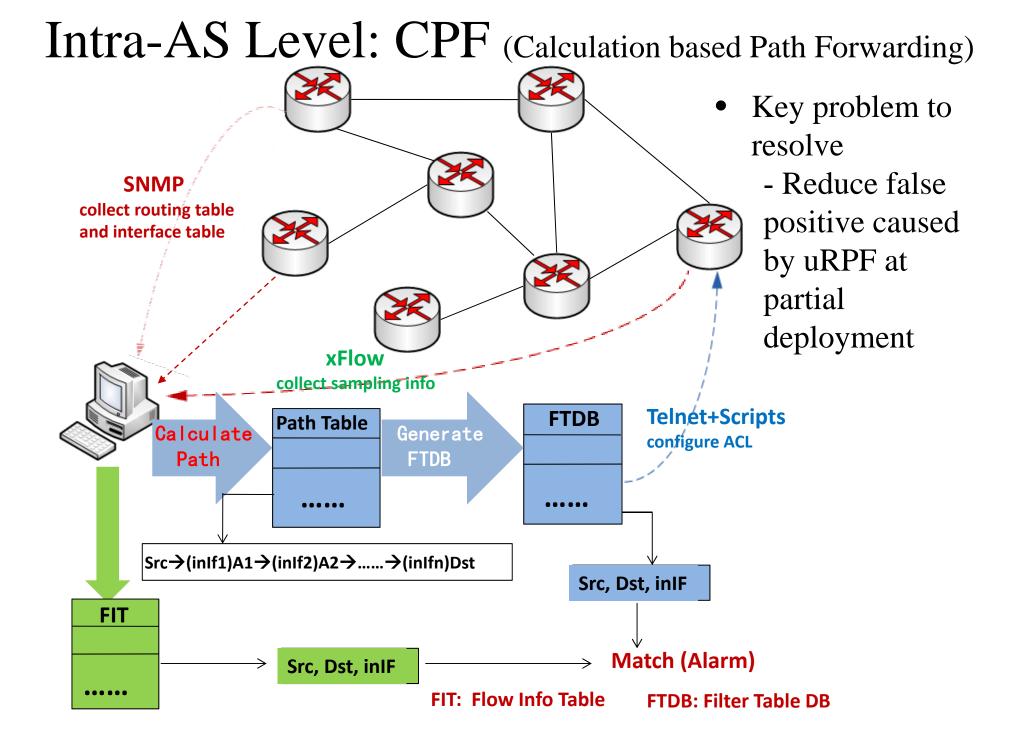
Source Address Validation Architecture (SAVA)

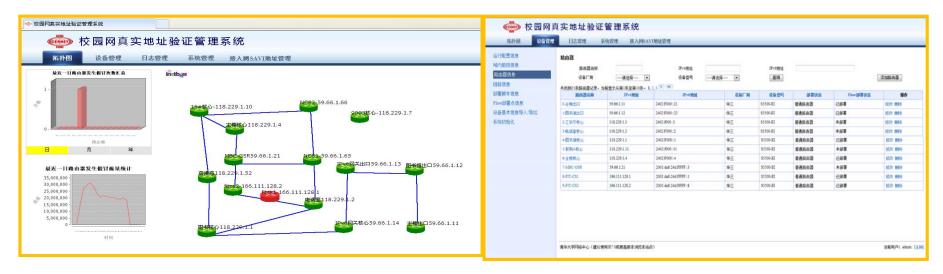

Source Address Spoofing

- Source address spoofing still a problem
 - Arbor Network annual network security report
 - MIT spoofer project
 - NANOG discussions
- Tsinghua university / CERNET proposed:
 - Source address validation architecture (SAVA) and solutions for IPv6
 - Solutions implemented, collaborating with domestic vendors
 - Deployed at CNGI-CERENT2 backbone and 100 universities' campus networks
 - Co-funders of IETF SAVI WG
 - -RFC 5210 SAVA
 - RFC 7039 SAVI Framework

SAVA: Source Address Validation Architecture (RFC 5210)




Access Level: SAVI-CPS (Control Packets Snooping based SAVI)


SAVI-CPS Implementation

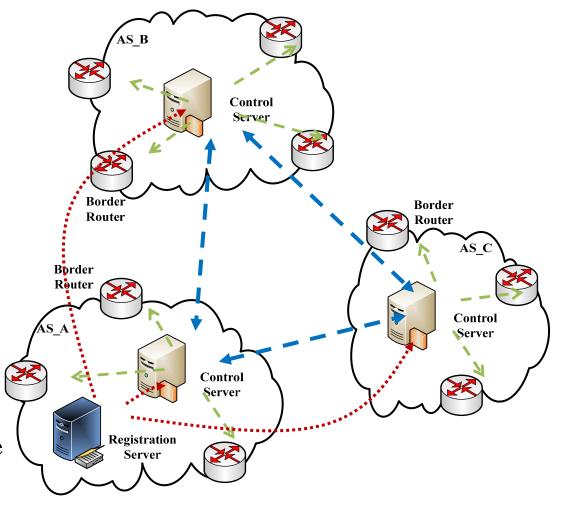
- Huawei
- ZTE
- H3C
- Ruijing
- Digitial China
- Centac
- Bitwa
- L3/L2 switch, WLAN

CPF Implementation

Topology mgmt

L3 devices mgmt

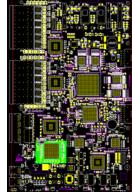
× 🔍 雅秋		😑 末童説 🕹 下一个 🍲 上一个 🌽	陶売														
校园网真 新井图 设备管理	[实地址	验证管理系统	lah hai seram														
	路由臺 时间内围 III - 协议						用户信息统计										
线 軍作日志臺迪 軍作日志臺地 系统日志管理	全部 •							☑ 在线用户 ☑ 用户名不为空 用户名		用户MAC		用户PP	开始日期		结束日期	1	
	第1P 目的1P 通端口 洗祥最大面積先数: ○ 100条 ○ 200条 ◎ 500条 ○ 1000条 ○ 2000条 ○ 5000条 ○ 10000条			重闻	用户名	用户MAC	▼ 用户P	340号	交换机名称	交换机P4地址	交换机中6地址		开始日期	结束日期	A		
						hjb	00 0a eb 14 c9 11	2402 f000 5 cd01 d09b 5a3c ecf b9c5	15	紫 剌14-205.10	59.66.205.10			2010-12-17 12	05:00		
	a particular a	事 (t)	350年1日前日700時19至時39時。 第1日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	30		sdi10	00 16 d3 e7 08 a4	2402 f000 5 cf01 80c1 2d23 3e97 6acc	15	祭制14-207.4	59.66.207.4			2010-12-20 14	40.00		
	海由器			协 家生时 餐	mhb05	f0 de f1 16 b1 0b	2402 f000 5 cb01 1c36 f078 a914 d728	23	紫剌14-203.10	59.66.203.10			2010-12-21 0:00:00				
	100.00	5		6	☆ 间 1 1≡	shiys10	00 1f c5 76 e8 d0	2402 f000 5 cc01 50a0 5adb c28 24d	6	祭剌14-204.2	59.66.204.2			2010-12-21 0.4	5.00		
	-			2011-	xry08	00 23 df 95 90 7a	2402 f000 5 cc01 39c6 62c3 a00f fbb0	9	解荆14-204.3	59.66.204.3			2010-12-21 8.0	15:00			
	fites1- /	告 2001:250:3c02:1001:e4fe:9e4d:53fc:611	:611 GigabitEthermet7/24 30 2001:250:4402:417:3cc8:9aca:48e0:608b	TCP 11-30	xinchen10	00 26 22 9d cc 0c	2402 f000:5:ce01:a5fc:7ffc:a4fc:cdad	12	紫剌14-206.7	59.66.206.7			2010-12-21 8-1	0:00			
				23:59:56	zkg09	00 30 18 a2 c5 95	2402;f000;5:cd01;41f0;a18b;924a;b057	9	柴剌14-205.9	59.66.205.9			2010-12-21 9:1	5:00			
	fites1-	2001:250:3c02:1001:e4fe:9e4d:53fc:611	GigabitEthernet7/24 30 2001:da8:21c:d290:6d94:4f6e:1acc:ec6f	30 2001-da8-21c:d290:6d94:4f6e:1acc:ec6f	TCP 11-30	xyzz10	84 2b 2b a7 15 9f	2402:f000:5:cf01:29ac:d6fa:d396:d11b	4	祭剌14-207.2	59.66.207.2			2010-12-21 9.4	5:00		
	166.111.128.1			23:59:56	clg10	00 1b fc c6 24 7d	2402 f000 5:cf01 80c0 fbc0 910 fbbe	4	祭剌14-207.7	59.66.207.7			2010-12-21 9.5	0:00			
	fites1-	告 2001-250:3c02:1001:85b3:184c:68e6:ab8	84 OigabitEthernet7/24 30 2001:250:2001:5199:ec19:8cd0:f42e:964e	2011- TCP 11-30	fan-j09	00 21 70 8f 29 2c	2402 f000 5 cb01 6888 4fcb 86dc b79b	7	紫剌14-203.4	59.66.203.4			2010-12-21 10:	35:00			
	166.111.128.1			23:59:56	tangcl08	00 1e 37 d4 df 82	2402 f000 5 ce01 604d f687 80d2 f966	5	條則14-206.10	59.66.206.10			2010-12-21 10	35:00			
	fites1-	2001:250:3c02:1001:e4fe:9e4d:53fc:611	OigabitEthernet7/2	4 30 2001 da8:100e:151:8123:fe4a.e407:3231	2011- TCP 11-30	li-bw10	00 15 f2 c8 e5 38	2402 f000 5 cd01 215 f2ff fec8 e538	13	紫剌14-205.8	59.66.205.8			2010-12-21 12	05:00		


Spoofing alarm

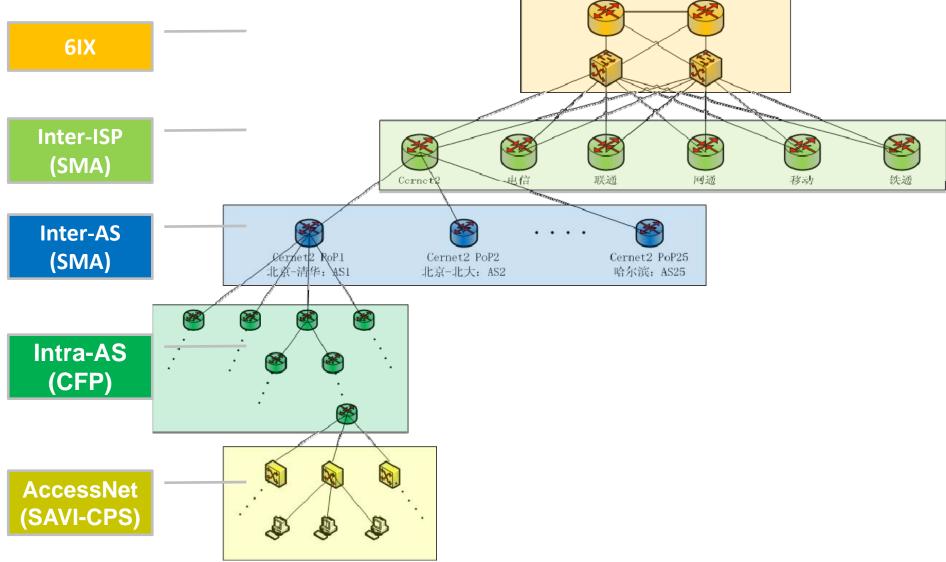
9

Inter-AS Level: SMA (State Machine based Authentication)

- Key problem to resolve
 - Incentive for deployment
- Trust Alliance
- ACS
 - Each member AS has a
 control server to negotiate
 parameter of SMs of each
 peer to trigger the same tag
 (random number) sequence
- ASBR
 - Add tags in IPv6 packets
 (in option header) and validate
 tags in destination
- Incentive
 - source address of Each AS can't be spoofed within the Alliance

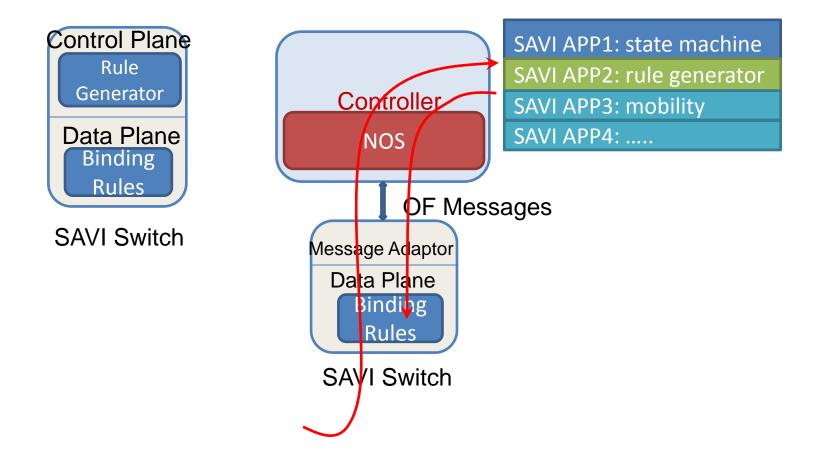


SMA Implementation


- Huawei NE40E core router line cards with 10G, GE ports
- Bitway BE12000 •
 core router line
 cards with OC48,
 GE ports
- Centec special box with 10G, GE (co-located with legacy routers)

SAVA Deployment at CNGI-CERNET2

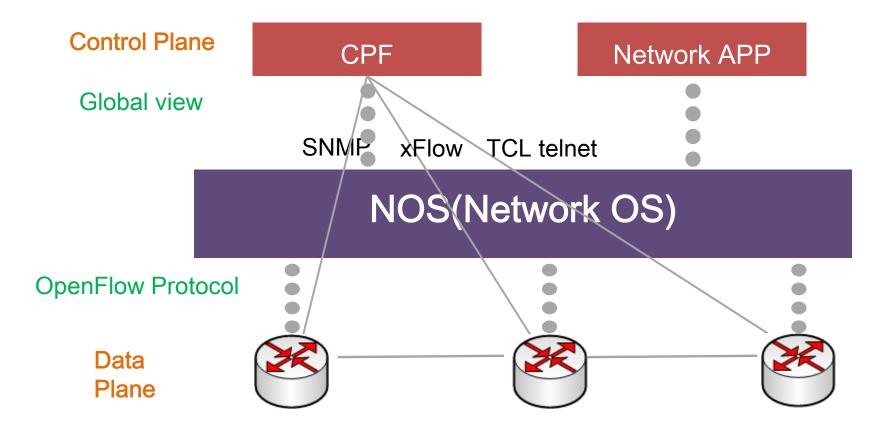
SAVA Deployment at CNGI-CERNET2

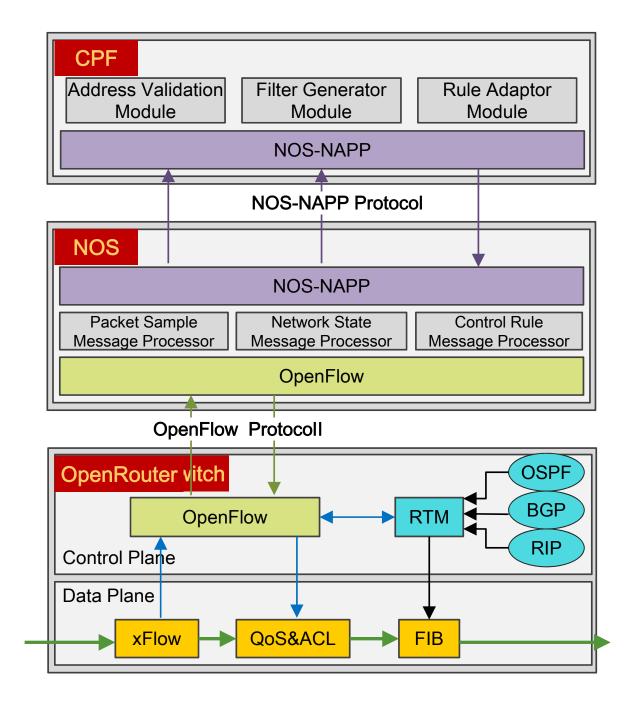


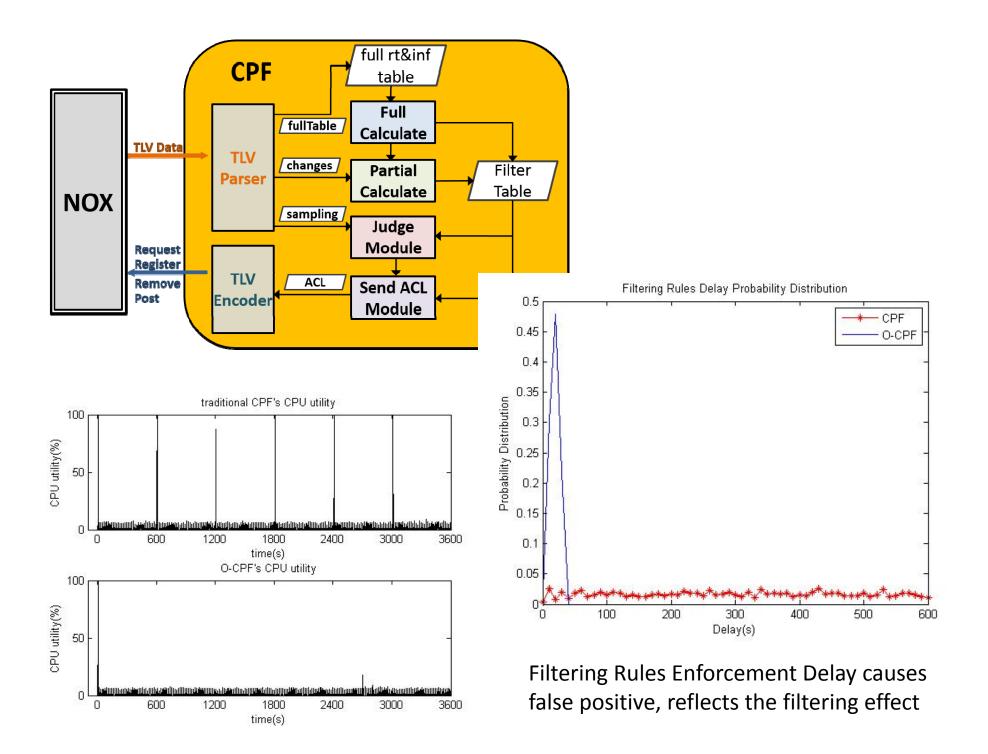
Leveraging SDN to enhance Source Address Validation

Motivations: enhancing Access

- Complex scenarios
 - Address assignment methods: Manual, SLACC, DHCP, SEND, Mixed, ...
 - Access methods: LAN, WLAN, DSL, 3G, ...
 - Mobility: local, across-network
 - Special cases: IPv6 transition, DNA, ... addr. related new stuff
 - Solutions implemented at switches for all scenarios
 - Complex for design and implementation
 - Low efficiency (most scenarios are not common cases)
- Complex configuration
 - Coherent configurations for ALL switch ports at SAVI "perimeter" in the whole access network
- Can we migrate complexity from switch to server ?

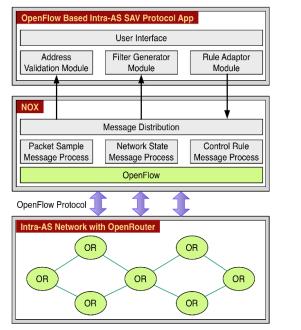

Software Defined SAVI (SDN-SAVI)

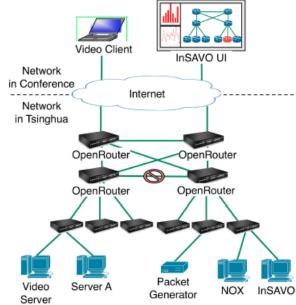



Motivations: enhancing Intra-AS

- Complexity to deal with legacy management and control interfaces
 - No unified MIBs (private MIBs)
 - No unified sampling protocol (sFlow, NetFlow, NetStream, etc)
 - No friendly programmable interfaces to configure ACLs (telnet + scripts are dangerous for production nets)
- Performance
 - Delay of network status update
 - Delay of control update
- Require unified and realtime mgmt/ctrl interfaces

SDN based CPF


Demonstrated at INFOCOM2012


* InSAVO: Intra-AS IPv6 Source Address Validation Solution with OpenRouter

Central Control: To get a global forwarding path and then resolve false positive of filtering information caused by asymmetric routing more than ingress filtering.

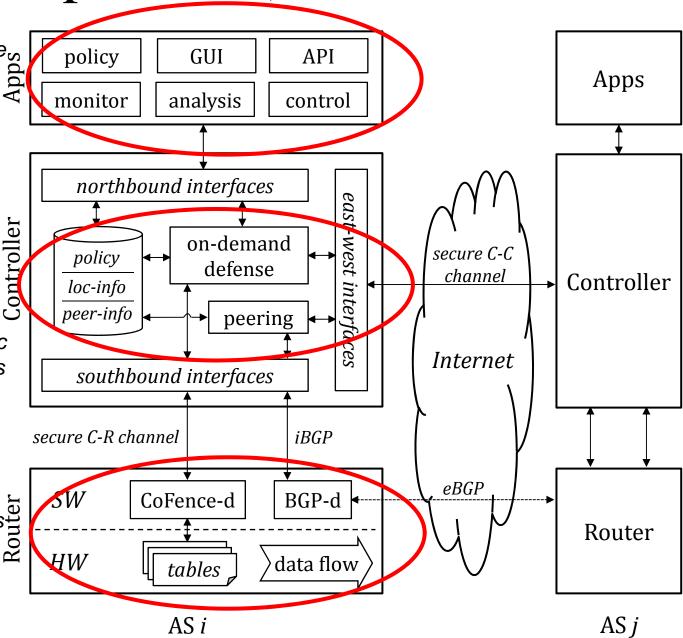
Integrated Protocol: To takes place of SNMP/xFlow/Telnet in order to reduce the complication caused by multiple control interfaces with OpenFlow protocol.

Evolvable Deployment: To provide software-defined abilities by extending OpenFlow, but also give a tradeoff between existing hardware and evolution cost.

Motivations: enhancing Inter-AS

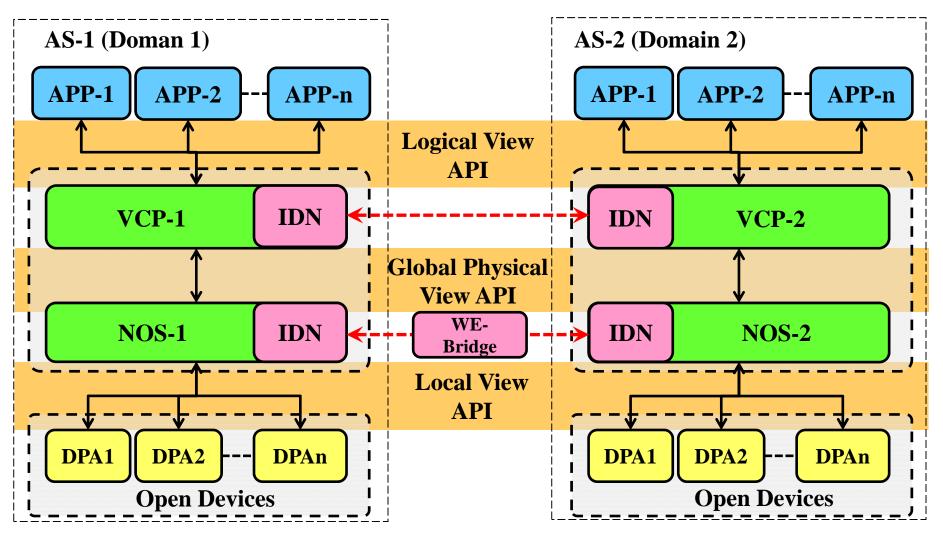
- Security: SMA uses lightweight tags for verification. An attacker might monitor packets in the backbone and replay the tag with spoofed packets
 - Solution- cryptographic tags to prevent replay
- Cost: Per-packet crypto marking incurs heavy data processing overhead beyond hardware capacity.
 - Solution- on-demand defense to reduce overhead
 - <u>"When</u>": defend only attack is detected (cost effective)
 - <u>"Which"</u>: define N defense functions, chosen by operators by the type of attack
 - <u>"Who"</u>: only filtering the specific flows with self-benefit

CoFence: Collaborative On-demand Spoofing Defense


- Distributed inter-AS collaboration
 - Deployer discovery, peering and defense invocation
- Spoofing defense functions
 - Against d-DoS: DP and CDP (CDP uses crypto marking)
 - Against s-DoS: SP and CSP (CSP uses crypto marking)
 - Extensible: can define more functions
- Function invocation
 - Quadruple: (function, parameters, prefix, time)
 - *Function*: the function to be invoked
 - *Parameters*: parameters for the function (e.g., keys for crypto)
 - *Prefix*: the src/dst prefix to be protected
 - *Time*: the time duration for this invocation
- These lead to SDN-based design

SDN (not OpenFlow) based CoFence

Higher-layer features can be added in apps, e.g., attack monitoring, traffic analysis, AS-wide policy and control, manual-config GUI and auto-config APIs for IDS.


Controller communicates with other domains, and bridges apps with routers, using SDN interfaces. It provides CoFence-specific functionalities and maintains domain-wide information.

CoFence-d communicates with controller and manages tables to define data-plane behavior.

"WE-Bridge" proposed in FINE

- *WE-Bridge* proposed in China 863 High-tech R&D project *FINE*
- Demoed at CANS13 and SupterComputing2013

Conclusion

- SAVA and solutions
 - Architecture
 - Access level: SAVI-CPS
 - Intra-AS level: CPF
 - Inter-AS level: SMA
 - Implementation, and deployment at CNGI-CERNET2
- Leveraging SDN to enhance Source Address Validation
 - Motivations
 - Handling complexity
 - Providing agility
 - Improving performance
 - Programmability is key to decoupling infrastructure and functionality (to migrate the complexity to APPs)
 - Leveraging centralized view for access (e.g. configuration, mobility) and intra-AS, and negotiated view for inter-AS SAV²⁶

Thanks!