Korea Testbed Construction Plan for Future Internet Research and Experiments

Myung-Ki SHIN – ETRI <u>mkshin@etri.re.kr</u>

July 18 2008

Note Well

- The current Internet architecture is under serious reconsideration and people started thinking about alternatives.
 - Redefining Internet architecture requires many challenged works
- It's necessary to support a variety of the new different architectures to accommodate the heterogeneity of Future Internet.
 - A common means IS REQUIRED to accommodate the new heterogeneous architecture research and experiments in a shared infrastructure.

Roadmap

- Step 1. Private Domain
 - GENI-compatible, but holding domestic a control center
- Step 2. Domain Federation
 - GENI <-> Korea Domain

Korea Testbed Requirements

- Multiple/Heterogeneous/Simultaneous Experiments Support
- Scalability (# of experiments)
- Threat-Zero
- Diverse Wireless Subnet Support
- GENI-compatible
- Private Domain + Domestic Control Center
- Domain Federation
- Inter-working with Today's Network (e.g., IPv6, BcN, IP-USN, etc. ISP Peering)

Why GENI-Compatible?

- Global Environment Support
- Global Partnership
- Quantum Jump

Strategy-dependent

GENI-Compatible Means --

Why Private Domain (GENI)?

- Domain Control Center
- Resource Sharing
 - the gulf between rich and poor
- Security / Policy
- E.g., Private PlanetLab

Common Controls for mGENI-Compatibility

- Control framework
 - Two choices (GEC's choice-dependent)
 - PlanetLab extensions (*)
 - Completely New Controls defined
- Resource federation
 - Identity
 - Resource Specification (Rspec) (mGENI + α)

Construction Plan

Korea Testbed Facilities

- Router Virtualization
- Wireless Virtualization
 - 3G/4G, WiBro
 - Mesh, Ad-hoc, Sensor ...
 - Cross-layer, cognitive radio ...
- Server (Cluster) Virtualization
- Inter-working with Today's Network
 - E.g., ISP peering (vBGP)
- Security Virtualization

Router Virtualization (1/2)

Resource pool architecture

Router Virtualization (2/2)

Wireless Virtualization

Common Infrastructure

- Two Backbone Providers (KOREN/KREONET2)
- General Requirements for KOREN/KREONET2
 - GENI (NLR) Connectivity
 - Flexibility / Isolation / Equipment Position
- cf) NLR Support for GENI
 - NLR owns its own national footprint dark fiber plant and its own DWDM optical systems.
 - NLR infrastructure has the flexibility to support a broad range of experiments, services and users
 - Support clean slate-based experiments

Infra + Facilities

- Nation-wide Backbone
 - Bandwidth Allocation (long-term vs. short term)
 - Network/Experiment Isolation
- Decide whether existing equipments could be isolated/re-used or not ...
- Decide where can be new equipments in position ...
 - Router/Switch
 - Wireless Subnet
 - Server/Access Cluster

Conceptual Design of FI Infrastructure

Milestone (1/2)

- 1st step (Private Domain)
 - Minimum GENI-compatible
 - GENI Minimal Core (defined by GEC)
 - Domain Control Center
 - Domain-Specific Reqs.
 - Policy & security
 - Substrates
 - Operations, Management, and Monitoring
 - User Portal and services
 - Experiment Workflow

Milestone (2/2)

- 2nd step (Domain Federation)
 - Programmability
 - Building blocks and dynamic plug-in
 - Domain federation
 - GENI Korea Domain
 - Architecture federation
 - Diverse network inter-working (e.g, Internet vs. Future Internet) (ISP-peering)

Open Issue: Testbed Name

- Choice 1
 - KENI (Korea Environment for Network Innovation)
 - E,g,) *Planet*Lab <-> *G*-Lab, *One*Lab ...
 - Private GENI -> KENI / JENI / CENI
 - AENI (Asia)
- Choice 2
 - Completely different name from GENI
 - Don't use "K" ...