

Multiple Distributed Indexing Scheme for Supporting Energy-efficient Range Query in Data-Centric Storage Sensor Networks

> XuanTung Hoang, Younghee Lee Information and Communications University. Korea

Introduction

- Collaborative sensing: capability of in-network processing (aggregating, summarizing, in-network query processing, etc.) on sensor readings.
- General purpose sensor networks target to flexibility in terms of collaborative sensing

communications United

Our focus

 resolving *multi-dimensional range query* for general purpose Sensornets.
High level events inferred from various sensor readings
Multi-attribute events

Preliminary and Related Work Data-Centric Storage (DCS) Sensor Networks

QHASArEE98ht

- Data-dependent reservoir
- Hash function determines organization of data
- Efficiency depends on the underlay routing
 - GPSR is used

Preliminary and Related Work

Distributed Index for Multidimensional data (DIM)

- Follow DCS approach
- Support multidimensional range query
 - K-dimensional event space (K >= 2)
 - An event = 1 point in K-D space
- Mapping K-D space to geographical area
- Geographical area and data space are indexed with z-order Space-Filling Curve
 - Portion of k-D space to geographical zones
 - Mapping through z-value (<u>code</u>)
- Locality preserving hash —

Geographical Υ ⁄area 11 0111 0101 1101 1111 1110 10 0110 0100 1100 01 1011 0001 0011 00 0000 0010 1000 1010 Х 00 01 10 11

Query Splitting problem

- Locality preserving in DIM is not perfect
 - 4-D event space
 - Coordinates: A₁, A₂, A₃, A₄
 - Two adjacent data zones code *p*0000 and *p*1000 are mapped to two separated geographical zones
 - *p* is some common prefix

- A range query may be split into far away zones (and far away nodes)
 - Communication overhead (and energy waste) since routing in sensor networks depends on relaying via intermediate nodes

Our solution: MDI

Multiple distributed indices to enhance locality preserving

- Use $\lceil k/2 \rceil$ DIMs to index data
- Circularly shift the order of coordinates by 2 positions after each time of indexing
 - DIM1: A₁, A₂, A₃, ..., A_k
 - DIM2: A₃, A₄, ..., A_k, A₁, A₂
 - ...

DIM1: A1, A2, A3, A4

Our solution: MDI (cont.)

- Using multicast routing for event insertion to [k/2] DIM indices.
 - Route event message to <u>common code</u> of event replicas
 - Duplicate event messages (and partition replica set) when arrive to the <u>zone of common</u> <u>code</u>
 - Incrementally refine event codes (similar to DIM event routing)

Common code of event codes = longest common prefix

Destination of event message (each for one DIM)

Our solution: MDI (cont.)

- Query processing
 - Concurrently lookup on $\lceil k/2 \rceil$ DIMs
 - Greedy query processing: Forward query message to the closest destination zones
 - Adopt query routing of DIM

Implementation and Simulation

- Based on DIM (Distributed Index for Multidimensional data) and ns2 simulation
- Simulation settings
 - B-d data model (4 DIM indices)
 - Network size: 150 nodes on 200mx200m
- Performance metrics
 - Insertion cost
 - Query cost (number of messages for a query) for various range sizes

Result of pilot simulations

- Insertion cost:
 - Expected result: 4 times of insertion cost of DIM
 - Simulation result: only about 2 times
- Query cost:
 - 0.5 times of point query cost in DIM
 - Reduction in query cost decreases when query range increases

Conclusions

- Multiple indices and Shift-and-circulate attributes increase locality preserving property
- Reduce query cost but sacrifice insertion cost
 - Beneficial when there are few insertions and many queries (static environment)
- Increase reliability
 - data redundancy
 - DIM sub-indices are independent: data lost (because of node failure) in one DIM does not affect other DIM.
 - need further evaluation

