Security Issues in Future Internet

2008. 8. 26

School of EE Seoul National University Seung-Woo Seo

Contents

- Review on security
- Crypto and authentication protocols
- Security in TCP/IP
- Motivations for security researches for FI
- Integrated dependability and security evaluation
- Conclusions

What is Security?

- Managing a malicious adversary
- Guaranteeing properties even if a malicious adversary tries to attack
- Basic security analysis
 - What are we protecting?
 - Who is the adversary?
 - What are the security requirements?
 - What security approaches are effective?

Security Goals

- Confidentiality: restricted to legitimate members
- Integrity: no modification or deletion in any unauthorized way
- Authentication: verification of the actual sender
- Access Control: access allowed to only authorized parties
- Non-repudiation: The sender cannot deny sending the message
- No denial-of-service: sustaining of the service
- And many others ...

Basic Approaches for Security

Prevention

- Attack prevention mechanisms used to prevent or complicate specific attacks
- Detection and recovery
 - Attack detection mechanism is in place, recovery phase initiated after attack detected
- Resilience
 - Despite undetected attacks, security property continues to hold
- Deterrence
 - Use of legal system to provide disincentive for attacks
- How can these approaches be used to achieve secrecy, integrity, availability?

Crypto and Authentication Protocols

Taxonomy of Cryptography

Authentication

- Alice must prove her identity to Bob
 - Alice and Bob can be humans or computers
- May also require Bob to prove he is Bob (mutual authentication)
- May also need to establish a session key
- May have other requirements, such as
 - Use only public keys
 - Use only symmetric keys
 - Use only a hash function
 - Anonymity, plausible deniability, etc., etc.

Authentication

- Authentication on a stand-alone computer is relatively simple
 - "Secure path" is the primary issue
 - Main concern is an attack on authentication software
- Authentication over a network is much more complex
 - Attacker can passively observe messages
 - Attacker can replay messages
 - Active attacks may be possible (insert, delete, change messages)

Simple Authentication

- Simple and may be OK for standalone system
- But insecure for networked system
 - Subject to a replay attack
 - Bob must know Alice's password

Challenge-Response

- To prevent replay, challenge-response used
- Suppose Bob wants to authenticate Alice
 - Challenge sent from Bob to Alice
 - Only Alice can provide the correct response
 - Challenge chosen so that replay is not possible
- How to accomplish this?
 - Password is something only Alice should know...
 - For freshness, a "number used once" or nonce

Authentication with Symmetric Key

- Secure method for Bob to authenticate Alice
- Alice does not authenticate Bob
- Can we achieve mutual authentication?

Security in TCP/IP

"Security Problems in the TCP/IP Protocol Suite"

- Paper by Steven Bellovin
- Interesting historical perspective
- Wakeup call for networking researchers, listing many security vulnerabilities
- Some of the possible attacks
 - IP level attacks
 - TCP level attacks
 - Routing attacks
 - ICMP attacks
 - Application-level attacks

Security Issues in Broadcast Networks

Security issues for communication between A, B, C, and Server?

Other IP Level Attacks

- IP fragment attack
 - Host stores fragments until entire packet arrives
 - Attack: send individual fragments only, host wastes memory to store them
 - Countermeasure?
- Smurf attack
 - Send packet with broadcast address to network, spoofing victim
 - All hosts on the network will send reply packet to victim
 - This is called a reflector attack, in this case the reflector also performs traffic amplification

TCP Level Attacks: TCP Primer

- TCP provides reliable data transfer using the best effort IP service
- Typical TCP packet exchange
 - $-A \rightarrow B: SYN(ISN_{\triangle})$
 - B → A: SYN(ISN_B), ACK(ISN_A)
 - $-A \rightarrow B: ACK(ISN_B)$
 - A → B: data ...
- Issues?

Other TCP Level Attacks

TCP SYN flooding

- Exploit state allocated at server after initial SYN packet
- Extensive flooding exhausts server's memory

TCP hijacking

 If TCP sequence numbers are known, attacker can inject malicious information into TCP stream

TCP poisoning

- Inject random data into TCP stream to shut down TCP connection
- Does sequence number need to be known?
- How many packets are required?

Motivation for Security Research in FI

Status of Internet

- Driving engine for economy and social networking
 - In Korea, market size has grown up to \$5370Billion in 2006
 - Social networking traffic like CyWorld has increased up to 12% of total Web traffic in 2007 (BusinessWeek, 2007.6.)

Very diverse requirements for Internet

Necessity of Future Internet

Current Internet

Openness
Layered structure
No QoS guarantee
No traceability
No built-in security

Future Internet

Manageability
Layered or nonlayered
QoS guarantee
Traceability
Security

. . .

 Research on Future Internet under diverse requirements has just begun

Current Status of Internet Security

- Limitation on current security technology
 - Separation of security function from network
 - Independent deployment of virus vaccine, spam filter, IDS, Firewall, VPN, etc. in each layer and application whenever necessary
 - Passive detection and prevention
 - Passive reaction by relying on the decision of human
 - Long delay until action, which allows additional attacks
 - More importantly, integrated end-to-end security measures are not available
 - Local detection of worm, DDoS and Bot
 - Each domain has its own security measures
 - No correlation among security technologies
 - No integrated end-to-end security measures

Change of Security Service Paradigm

Current

Passive, reactive
Single layer/equipment
Detection afterwards
Bolted-on service
Separation from network

Future

Automatic, active

Multiayer integration

Diagnosis in advance

Built-in service

Integration to network

⇒ Security is no more an option, but a necessity that should be considered at the initial stage of network design.

Direction of Security Research for FI

Robust & Secure Future Internet

Quantification of security measures

Security architecture design

Secure algorithm & protocol design

Mapping of Security Requirements

- Classification of security levels
 - Service profiling for security requirements
 - Classification and mapping to network configurations
- Network service
 - Secure and robust service in network layer which is resilient to external perturbation

Design Considerations

- Non-overlapped security service
- Configurability
- Balance between privacy and security
- Balance between availability and security
- Automated diagnosis (self-diagnosability)
- Security audit

Information Assurance

- Convergence of security and dependability
 - Protection of critical information and resources must be provided
 - Networked information systems must function correctly in various operational environments
- Ensuring to provide an assured level of functionalities in the presence of disruptive events
 - Survivability, resilience, disruptive tolerance, etc.
- Integrated framework for security and dependability

Integrated Dependability and Security Evaluation

Failure Process

- "Fault-Error-Failure" Pathology
 - Can be used to model security failures in a similar way as the dependability community
 - Fault: an atomic phenomenon that can be either internal or external, which causes an *error* in a system
 - Error: a deviation from the correct operation of a system, which may lead to a failure of a system
 - Failure: an event that causes a system service to deviate from its security requirements

Intrusion

- The result of the external malicious human-made faults
- Because they are intentional in nature, intrusions cannot be modeled as truly random processes.
- Even though the time, or effort, to perform an intrusion may be randomly distributed, the decision to perform the action is not

Modeling Intrusion as Transitions

- Modeling failure rate
 - $-\pi_i(a)$: the probability that an attacker will choose action a when the system is in state i
 - $-\lambda_{ij}(a)$: the accumulated failure intensity if all n potential attackers always take action a
 - failure rate between *i* and *j*

$$q_{ij} = \pi_i(a)\lambda_{ij}(a)$$

- System measures
 - Based on CTMC model, measures, i.e., MTFF, MTTF can be obtained

Model Parameterization

- Accidental failure, repair rate
 - The procedure has been practiced for many years in traditional dependability analysis.
- Obtaining $\lambda_{ij}(a)$ is challenging
 - To let security experts assess the intensities based on subjective expert opinion, empirical data, or a combination of both.
 - To collect information from a number of different sources in order to predict attacks
- Obtaining $\pi(a)$ is more difficult
 - To use game theory as a means for computing the expected attacker behavior

Predicting Attacker Behavior

Motivation for attacks

- Financial gain : credit card theft, blackmailing, or extraction of confidential information
- Entertainment : hacking web sites or rerouting Internet browser requests
- Ego: overcoming technical difficulties or finding innovative solutions
- Ideology: likely to increase in the future
- Entrance to a social group of hackers: writing a particular exploit, or breaking into a particularly strong computer security defense
- Status: the most powerful motivation factor

Demotivation

- Attackers may be risk averse
- The illegal aspect of actions (criminal offense) may prevent even remote attackers to use available tools to exploit vulnerabilities in corporate networks

Reward and Cost Concept

Reward

- An attacker accumulates reward during the events of an attack
- Whenever an attacker performs an attack action, he receives an immediate reward.
- If the action succeeds, an additional reward (expected future reward) may be gained.
- The expected amount of recovery effort required from a system administrator
- The degree of bandwidth occupied by a DDoS attack

Cost

- A negative reward is used to quantify the impact on an attacker as an attack action is detected and reacted to.
- Risk-averse attackers may sometimes refrain from certain attack actions due to the possible consequences of detection.

Modeling Interactions as a Game

The interaction between an attacker and a system modeled as a game

- A two-player, zero-sum stochastic game
 - Compute the expected attacker behavior in terms of a set of attack probability vector π .
 - Since the game is zero-sum, an attacker's gain is the system's loss.
 - Does not assume that the attackers know the system outcome values.
 - The purpose of the game model is to predict the behavior of attacker and not to perform any cost-benefit optimization of system defense strategies.

Conclusions

Goal of Security Research:

Design of Security Architecture for Future Internet with ~100% guarantee of C, I, A, and A

- Find the most fundamental prevention mechanisms against security attacks
- Desirable if self-restoration feature is incorporated
- Must develop efficient security policies for Future Internet

