Hierarchical Indirection Multicast

2008. 8. 28

Park, Soyoung sypark@mmlab.snu.ac.kr

Contents

- Internet Indirection Infrastructure
- End-host controlled multicast routing
- Hierarchical Indirection Multicast

Internet Indirection Infrastructure

Motivation

- Internet : designed for **unicast** between **fixed** locations

- Today, we want **multicast**, **anycast**, **mobility**

Propose

• a single new overlay network

- Provides a general communication abstraction
 - unicast, multicast, anycast, mobility
- Uses application layer solutions

How

• Using "Indirection"

 the ability to reference something using a name, reference, or container *instead of the value itself* [wikipedia]

Internet Indirection Infrastructure

- Each packet is associated with an id
- Receiver : inserts trigger (id, addr) into the network
- Sender : sends packet (id, data)

Internet Indirection Infrastructure

receiver (R')

sypark@mmlab.snu.ac.kr

Identifier

- i3 over Chord
 - Node identifier : i3 server identifier
 - i3 servers construct the Chord ring
 - generated the same as the node identifier in Chord
 - Key identifier : id
 - Generated using the random sampling
 - i3 servers store (id, the address of and end-host) pairs

Chord	equivalents in i3
node identifer	i3 server identifier
key identifer	id
value	address of an end host

Random sampling

- In i3, to avoid triangular routing, endhosts should select an id which a nearby i3 server is responsible for
 - id sampling
 - An end-host selects an id randomly, inserts a trigger and sends a packet with the id → measure RTT to the i3 server
 - Offline, chose id set with low RTT latency

Large Scale Multicast

End-host controlled multicast routing

Motivation

- Existing multicast design
 - Infrastructure-based approach
 - More efficient and scalable multicast tree
 - Host-based approach
 - Easy to deploy and modify
 - More flexibility
 - ability to change the tree construction algorithms as per user needs
- Goal: realize the best of both approaches

How

- On top of i3, build multicast tree by using trigger chain
 - Infrastructure-based: export simple primitives
 - Host-based
 - : use only the primitives to construct multicast trees in a distributed fashion

Join algorithm

- Selects a server to join (join_server) using triggers
 - Top-down method
- Makes a tree branch by inserting trigger
 (join_server, close_server), (close_server, my_address)

Limitations of ECM

- The optimal multicast tree is not guaranteed
 Greedy algorithm : The multicast tree is build differently according to the order of host join
- Physical topology is not considered at all
 - We propose a way to aggregate branches using physical topology

Hierarchical Indirection Multicast

Identifier: revisited

- i3 over Chord
 - Node identifier : i3 server identifier
 - Key identifier : id
- Identifier in Chord : flat label
 - Node identifier : SHA-1(IP address of node)
 - Key identifier : SHA-1(key)
 - It doesn't reflect any physical information. Just logical identifier.

Hierarchical Indirection Multicast

- Identifier = (physical topology) hierarchy part + random part
- Aggregation
 - Instead of individual forwarding to nearby i3 servers, forward to one of them aggregately and the i3 server does to the others
 - "nearby" can be detected hierarchy part of identifier

Identifier in HIM (1/2)

- (Physical topology) Hierarchy part + random part
- i3 servers identifier
 - Random part: generated the same as the original
 - Hierarchy part: assigned by i3 servers physical topology
 - i3 servers in the same domain have same hierarchy part \rightarrow proximity, aggregation

Identifier in HIM (2/2)

- id (identifier for indirection, trigger)
 - Instead of random sampling
 - Assume the end-host knows a nearby i3 server
 - End-host request id space to the nearby i3 server
 - i3 servers know their responsible id space

Multicast forwarding in HIM

- Instead of individual forwarding to i3 servers on the multicast tree,
- HIM uses aggregation
 - From hierarchical part of i3 identifier, we know whether separate logical link end points (i3 server) are located closely or not

Q & A

Thank you.

sypark@mmlab.snu.ac.kr

24/24