SIBILLA: A Step Towards a Planet-Scale Measurements Retrieval Infrastructure

DK Lee, Keon Jang, Changhyun Lee, Sue Moon, Gianluca Iannaccone*

FISC Student Workshop Aug 28, 2008

Division of Computer Science, KAIST Intel Research, Berkeley*

Motivation behind the talk

Distributed applications are popular in today's Internet.

- Peer-to-peer file sharing, CDNs, multi-player online games
- They can benefit from information about the Internet path and proximity between their nodes.
 - 1. Nearest neighbor discovery
 - 2. Leader node selection

3. Distribution tree construction

Our goal is a DNS-like system that provides networkinternal performance information

Key idea behind Path Stitching

Internet separates *inter-* and *intra-domain* routing

» Path stitching *splits paths* into path segments, and *stitches path segments* together using BGP routing information to *predict a new path*

 Many measurement data are available already, and we use them and *do no* additional measurement

Talk outline

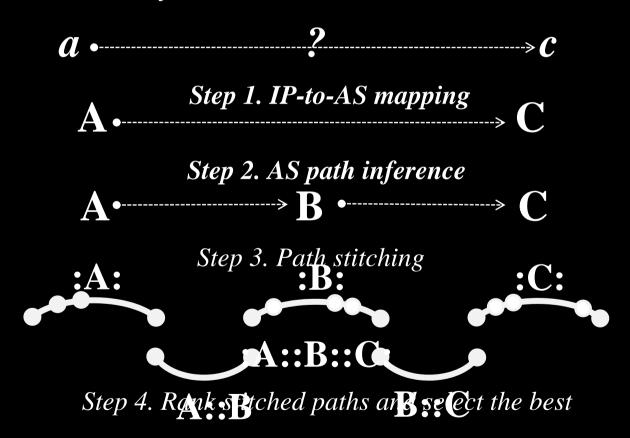
- Path Stitching algorithm
- When Path Stitching produces no stitched path
 - Approximation heuristics
- When Path Stitching produces multiple paths
 - Preference rules
- Implementation and deployment issues
- Concluding remarks

Data set

CAIDA Ark's traceroutes

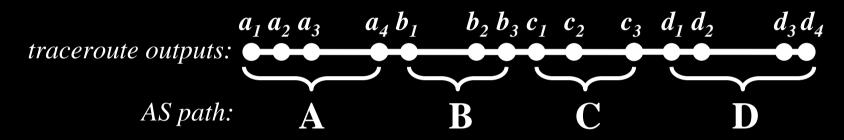
- One round of *traceroute* outputs from 18 sources to every /24 prefix
- 14 millions of *traceroute* outputs

BGP routing tables


- University of Oregon, *RouteViews*' BGP listener
- RIPE RIS' 14 monitoring points (rrc00 ~ rrc07, rrc10 ~ rrc15)

Notations

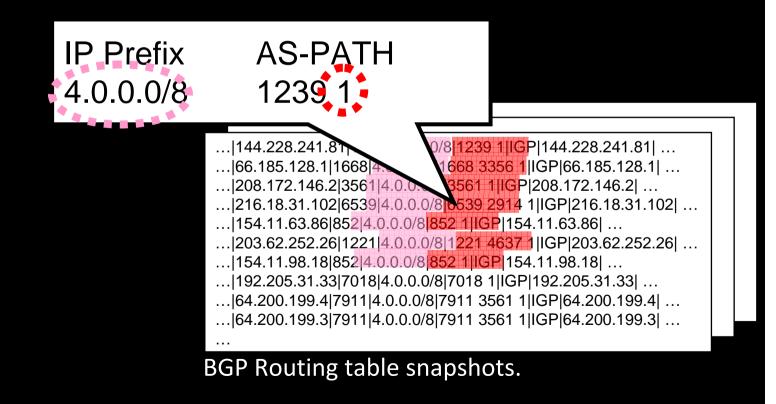
- :X: Intra-domain paths of AS X
- X::Y Inter-domain edges between AS X and Y
- :X: + X::Y + :Y: = :X::Y:
 - $\ensuremath{\,^{\ensuremath{\scriptstyle \text{N}}}}$ Internet forwarding paths from AS X to Y


Overview of Path Stitching

What are Internet forwarding paths and end-to-end delay between two arbitrary Internet host a and c?

Index building

 In order to make a huge number of *traceroute* measurements *searchable*,



- Choices
 - Build indices for all possible partial paths
 - ABCD, ABC, BCD, AB, BC, CD, CD, A, B, C, D
 - Requires O(l²) space
 - Build indices for intra AS and inter AS segments
 - A, B, C, D, AB, BC, CD
 - Requires O(l) space

Step 1. IP to AS mapping

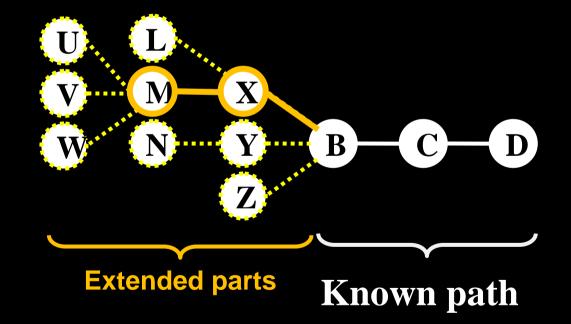
Use BGP routing table snapshots:

- An IP address is mapped to the *longest matching IP prefix* in a table,
- Take the last hop in the AS-PATH as the origin AS

Errors in IP to AS mapping

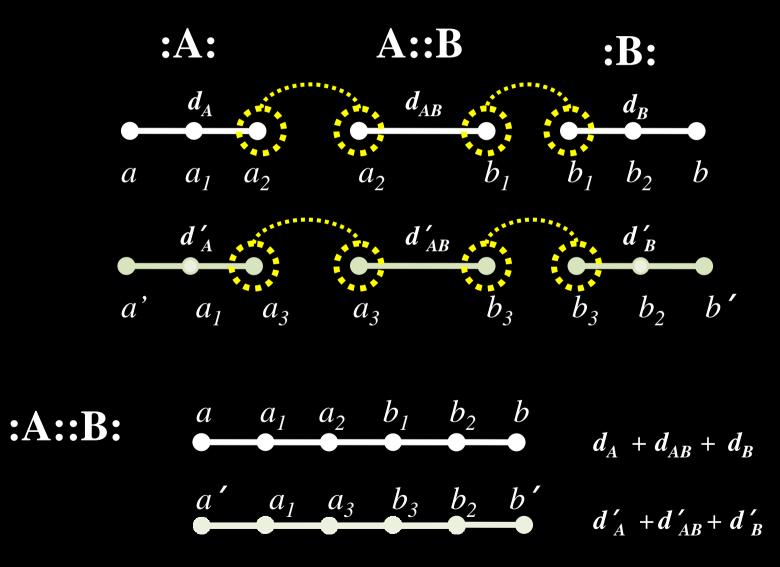
Single origin AS mismatch

- Mao et al reported that inaccurate mapping result in
 - Missing AS hop, extra AS hop, substitute AS hop, two hop AS loops
- 8.9% AS paths contain two-hop AS loops
- If we use the same IP-to-AS mapping for a query, the outcome would be consistent although mismatched.


Multiple origin AS (MOAS)

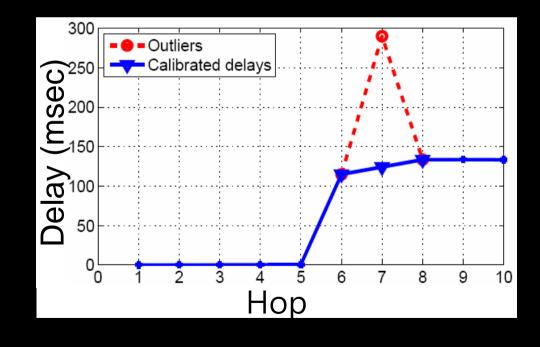
- 2,651,387 out of 14M traceroutes have MOAS conflicts
- 22.61% of MOAS are caused by Internet exchange prefixes
- Infer AS paths from all MOASes

Step 2. AS path inference


Qiu and Gao's methodology [GLOBECOM'06]

- Exploits the AS paths, *known paths*, appeared in BGP routing tables.
- Infer AS paths that satisfying valley-free property [L.Gao, TON'00]

Choose shortest path with low *unsure length* and high *frequency index* Accuracy of 60% reported


Step 3. Stitching path segments

Sources of error – traceroute

Dynamic nature of the Internet

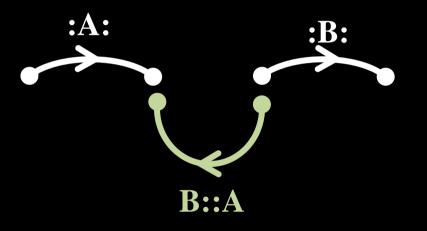
- » Record all reported measurement per path segment.
- » Report the most recent or median of the past known history.
- Non-decreasing delay principle

When Path Stitching produces no stitched path

Case #1: No path segments in source/destination AS

The source or the destination is not in the same AS with any measurement data

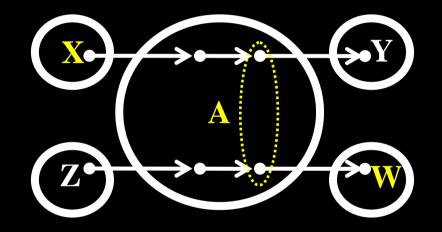
Data type	Total AS	Transit AS	Stub AS
Ark	14,378	4,418	9,960
BGP	28,244	4,847	23,397


For 90% of undiscovered AS in Ark, the *traceroute* did not reach to AS

ASes not covered by Ark accounts for only 110M or 5.8% of IP addresses in BGP

Case #2: No segments in the middle of inferred AS path

No inter-domain path segment

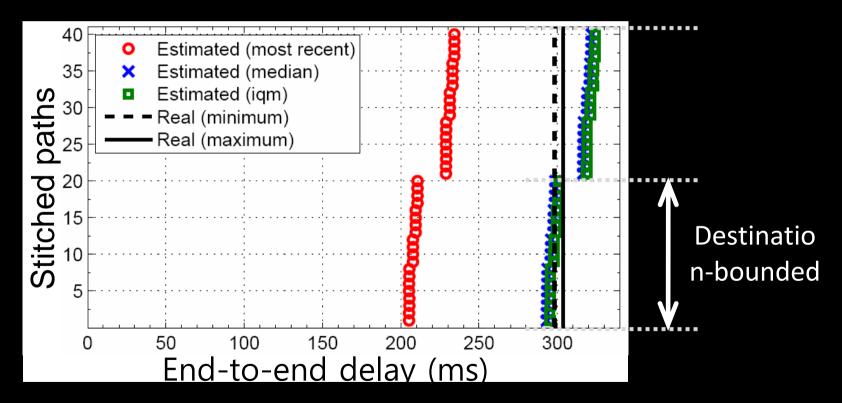

Incorporating the reverse inter-domain segments

- No intra-domain path segment
 - No solution yet

Case #3: Segments does not rendezvous at the same address

For all ASes along the path has segments, but they do not rendezvous at the same address

 $\mathbf{X::A::W} = ?$

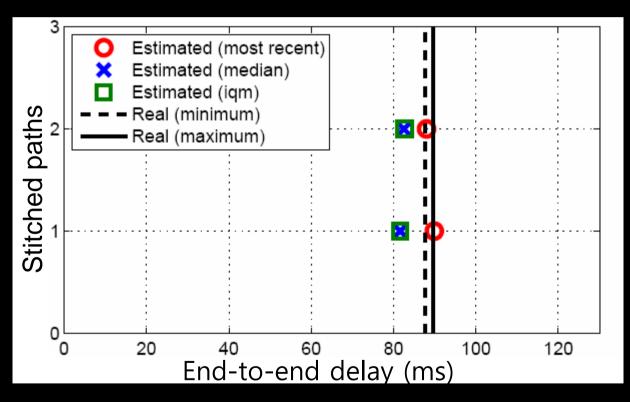

- Clustering heuristics:
 - Clustering IP addresses of the same router
 - Clustering IP addresses in a single Point-of-presence (PoP)
 - Clustering two ending points based on their *IP prefix proximity*

When Path Stitching produces multiple stitched paths

Same destination-bound preference

planetlab2.xeno.cl.cam.ac.uk

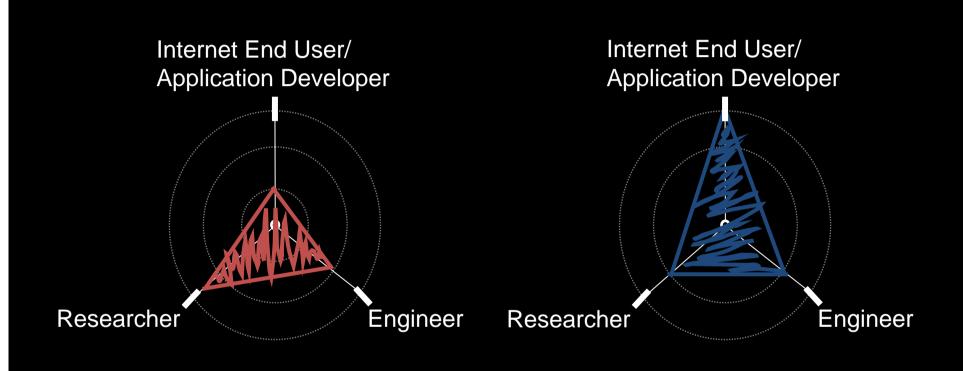
→ pl1-higashi.ics.es.osaka-u.ac.jp



» Preference to the same destination-bound path segments

Closeness to source and destination

Planetlab2.csil.*mit.edu*



In 20 % of Ases, delay difference within an AS is > 100 ms.
 » Preference to the closest points in source and destination ASes

Build and deploy DNS-like System in the real world

For Whom the Technology's Exploited

Previous works: NetQuest, Vivaldi, IPlane

Our approaches: SIBÍLLA:

Requirements

Planet-scale coverage
Provides historical/ recent/ real-time data
High accuracy
Real-time query processing
Programmability

Data gathering method

Uniform data representation

Measurement retrieval

Programmable interface

SIBÍLLA: Unified Internet Looking Glass

System-relate Requirements

- Supports distributed query processing
- Quality control
- Security
- Political issues
- Deployment

Drafting behind the domain name system (DNS)

- Distributed database system which's been deployed all over the world.
- **TTL**-based caching mechanism
- gethostbyname()

Conclusions

Path stitching

 Internet forwarding path and latency prediction by combining traceroutes and BGP data

Our approach *uses* existing measurement data and *do no* additional active measurements

Evaluation results are preliminary, but promising

Thank you!

- Any question?
- For more question:
 <u>dklee@an.kaist.ac.kr</u>