

### Channel Adaptive ACK Mechanism in IEEE 802.15.3 Wireless Personal Area Networks

### Jong-In Lee 28 August 2008 Broadband Communication Laboratory Korea University

FISC 2008





Introduction

- System model
- CA-ACK : Channel adaptive ACK mechanism
- Conclusion and future work



#### Key applications in wireless personal area networks (WPANs)

- Wireless high definition television (HDTV) streaming / Wireless USB
  - Require high data rates up to few tens or hundreds of Mbps

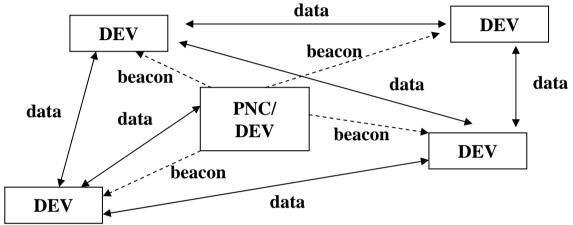
#### Throughput improvement in high-rate WPANs

- Supporting high data rate in PHY specifications
  - Ultra Wideband (UWB) PHY amendment IEEE 802.15.3 task group a (TG 3a)
  - milimeter wave (mm-wave) IEEE 802.15.3 task group c (TG 3c)
- Need to improve throughput at MAC layer
  - Overhead while a frame is transmitted
    - E.g. MAC header, preamble, guard time, interframe space (IFS), ACK, etc..

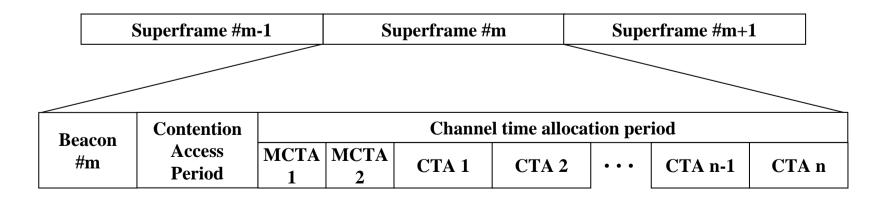


#### Research trend about throughput improvement in MAC layer

- Optimal payload size for maximizing the throughput [1]
- Adaptive delayed ACK scheme for both TCP and UDP traffic [2]
- A novel header compression method [3]
- Solution Frame aggregation techniques to reduce MAC and PHY overhead [4]

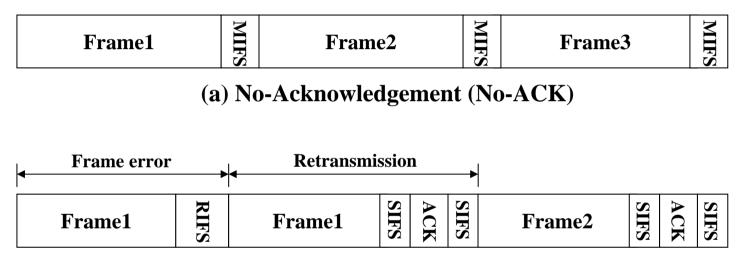

#### Our approach

- Pay attention to acknowledgement (ACK) mechanism that is indispensable feature in IEEE 802.15.3 MAC
- How to optimize ACK mechanism is a still open issue
- Especially, the performance of ACK mechanisms are effected by wireless channel conditions (e.g. frame error rate (FER))
- Need to design an adaptive ACK mechanism

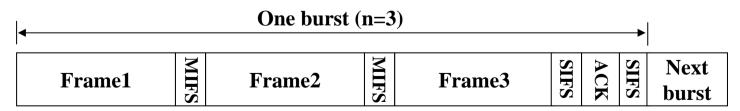

# System model



#### Piconet elements in IEEE 802.15.3




Superframe structure in IEEE 802.15.3

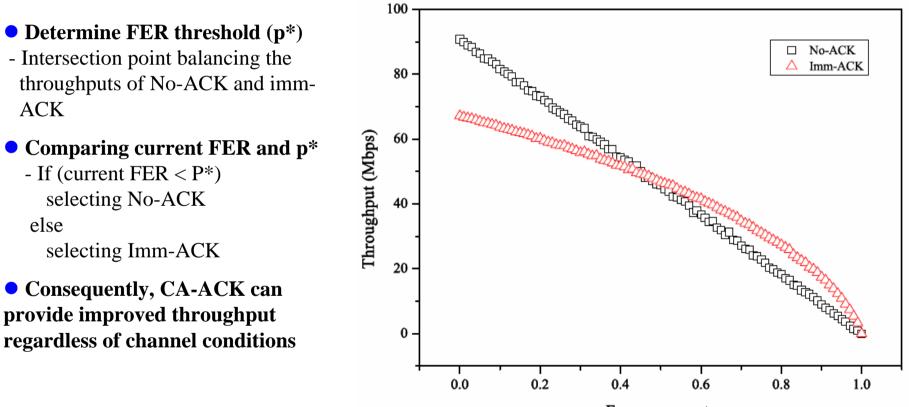





#### ACK mechanisms in IEEE 802.15.3



(b) Immediate –Acknowledgement (Imm-ACK)




(c) Delayed Acknowledgement (Dly-ACK)

### *Overview - Channel adaptive ACK mechanism*



#### Description of CA-ACK (Channel adaptive ACK)



Frame error rate

No-ACK vs. Imm-ACK (payload size: 1024 bytes, data rate 106.7 Mbps)



#### Estimating the FER threshold (p\*)

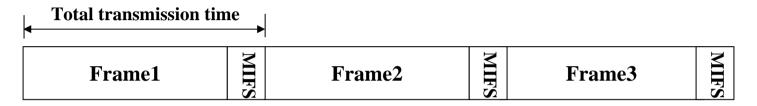
- Presentation of closed form as a function of the payload size and data rate
- According to change payload size and data rate, update the p\*

#### Measuring the current FER

- Dividing the number of unsuccessful frames with the total number of frames
  - For Imm-ACK
    - source DEV easily obtain the number of erroneous frames by receiving ACK frames.
  - For No-ACK
    - source DEV always triggers the Imm-ACK mechanism for first frame in a CTA
    - update the current FER at least at an interval of a superframe



#### Assumption


- ACK frame is assumed as error free
  - Small length (e.g. 10bytes in IEEE 802.15.3)
  - Transmission at base rate (e.g. 53.3Mbps in UWB system)

#### Notations

| Notation                       | Meaning                              |
|--------------------------------|--------------------------------------|
| T <sub>no</sub>                | Total transmission time with No-ACK  |
| T <sub>Imm</sub>               | Total transmission time with Imm-ACK |
| $L_P$ and $L_{MH}$             | Length of payload and MAC header     |
| $T_{MIFS}, T_{SIFS}, T_{RIFS}$ | Time of a MIFS, SIFS, and RIFS       |
| $T_P$                          | Transmission time of payload         |
| T <sub>MH</sub>                | Transmission time of PHY header      |
| T <sub>ACK</sub>               | Transmission time of an ACK frame    |
| $R_D$ and $R_B$                | Data rate and base rate              |
| Р                              | Frame error probability              |

Derivation of FER threshold (cont.)

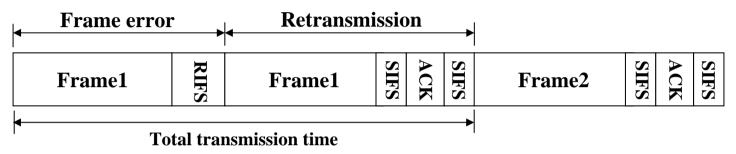
#### Throughput model of No-ACK



• Total transmission time with No-ACK

$$T_{No} = T_P + T_{MH} + T_{PH} + T_{MIFS}$$

•  $T_P$  and  $T_{MH}$  are given by


$$L_P/R_D$$
,  $L_{MH}/R_B$ 

• Throughput of No-ACK, S<sub>no</sub> can be expressed as

$$S_{No} = \frac{L_P(1-p)}{T_{No}}$$

Derivation of FER threshold (cont.)





- Imm-ACK retransmits a corrupted frame up to N
- Consider two case:

1) failed transmission time and 2) successful transmission time

 $T_F = T_P + T_{MH} + T_{PH} + T_{RIFS}$ ,  $T_S = T_P + T_{MH} + T_{PH} + 2T_{SIFS} + T_{ACK}$ 

- Probability that a frame successfully transmitted at the i<sup>th</sup> retransmission attempt ( $0 \le i \le N$ ) is  $p^i(1 p)$
- Consequently, the throughput of Imm-ACK is given by

$$S_{imm} = \sum_{i=0}^{N} \frac{L_{P} p^{i} (1-p)}{iT_{F} + T_{S}}$$

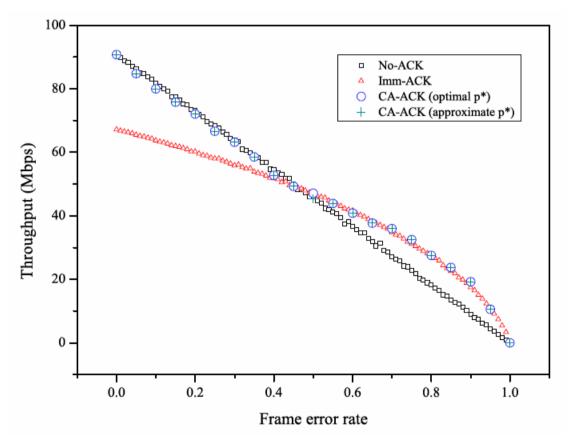


#### Estimating FER threshold

- In IEEE 802.15.3, retransmission limit is typically equal to 5
- But, it is complicate to obtain p\* that balances Equation of No-ACK and Imm-ACK
- Thus, we assume retransmission limit equal 2
  since p<sup>i</sup> (i ≥ 3) is sufficiently small
- Then, the balance equation for p\* is given by

$$\frac{L_P(1-p)}{T_{No}} = \sum_{i=0}^2 \frac{L_P p^i (1-p)}{iT_F + T_S}$$

• From a function of p, we can obtain p\* as

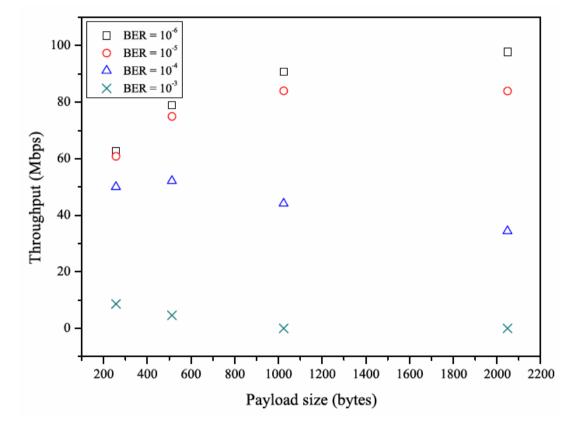

$$p^{*} = \frac{-\frac{L_{p}}{T_{F} + T_{S}} + \sqrt{(\frac{L_{p}}{T_{F} + T_{S}})^{2} - 4(\frac{L_{p}}{2T_{F} + T_{S}})(\frac{L_{p}}{T_{S}} - \frac{L_{p}}{T_{F}})}}{2(\frac{L_{p}}{2T_{F} + T_{S}})}$$

## Simulation results



#### Effect of frame error rates

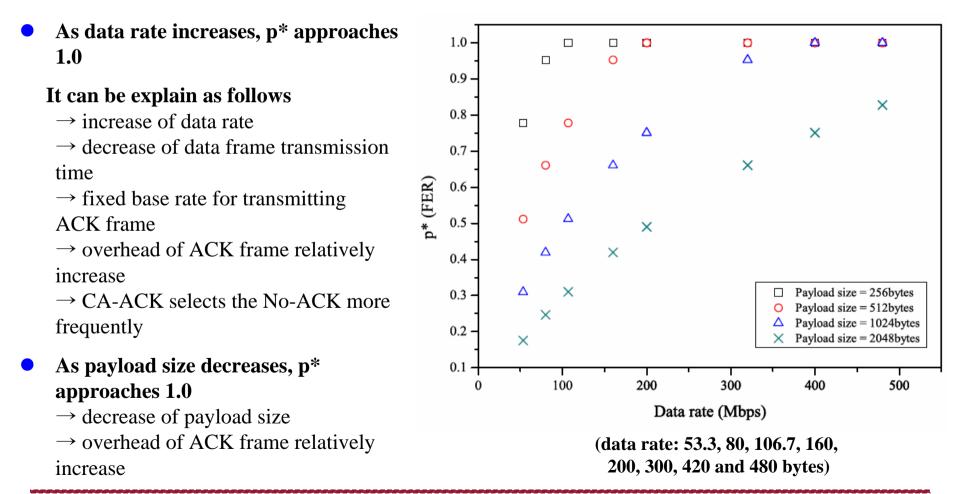
- CA-ACK is a more efficient and robust mechanism under different wireless channel conditions
- Throughputs of CA-ACK with approximate p\* and optimal p\* are almost same
- CA-ACK with approximate p\* is more practical




(payload size: 1024 bytes, data rate: 106.7 Mbps)



#### Effect of payload size under different bit error rates (BERs)


- When the BER is 10<sup>-3</sup>
  throughput decreases with the increase in payload size
- When the BER is 10<sup>-6</sup>
   throughput increases with the increase in payload size
- For given BER b, FER is
  1-(1 b)<sup>Nbit</sup> (Nbit is the number of bits in a frame)
- If BER is high, large frame size results in degradation of throughput
- More interestingly, when BER is 10<sup>-4</sup> and 10<sup>-5</sup>, it can be found the optimal payload size to maximize the throughput



(payload size: 256, 512, 1024, 2048 bytes)



#### Effect of data rate and payload size on p\*





#### Channel adaptive ACK mechanism is proposed

- An ACK is selectively transmitted depending on wireless channel conditions
- Present a closed form expression for FER threshold in CA-ACK, which makes CA-ACK a practical solution
- By simulation, it can be shown that CA-ACK outperforms No-ACK and Imm-ACK in terms of MAC throughput

#### Future work

 Investigate the performance of CA-ACK under correlated wireless channel conditions



- Y. Xiao, X. Shen, and H. Jiang, "Optimal ACK Mechanisms of the IEEE 802.15.3 MAC for Ultra-Wideband Systems," IEEE Journal on Selected Areas in Communications, vol. 24, no. 4, pp. 836-842, April 2006
- [2] H. Chen, Z. Guo, R. Yao, and Y. Li, "Improved Performance with Adaptive Dly-ACK for IEEE 802.15.3 WPAN over UWB PHY," IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences, vol. E88, no.9, pp. 2264-2372, September 2005
- [3] E. Kwon, Y. Jeon, S. Lee, and J. Lim, "Enhancement of IEEE 802.15.3 High Rate WPAN via MAC header Compression," in Proc. IPCCC 2005, pp. 629-630, April 2005
- [4] "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Higher Throughput," IEEE P802.11n/D2.0, February 2007