Security and Privacy Issues on Current and Future Internet

Souhwan Jung

Soongsil University

souhwanj@ssu.ac.kr

Outline

- Features of Current Internet
- Security and Privacy Issues on Current Internet
- Future Internet
 - Challenges
 - Requirements
- Security Issues on Future Internet Architectures
- Summary

What is the Internet?

Collection of networks that communicate

- with a common set of standard protocols (TCP/IP)
- by multilateral agreement

Collection of networks with

- no central control
- no central authority
- no common legal oversight or regulations
- no standard acceptable use policy

Physical network connections are not important

leased lines, dial-up, wireless

Logical connectivity

everything is connected to everything else

Security Issues on Current Internet (1/2)

- Internet Infrastructure is Inherently Insecure
 - Security was not a design consideration of Internet protocols
 - Unauthenticated routing protocols control Internet reachability
 - Add-on security is hard on users and hard to integrate into applications
- Vulnerable Software Everywhere
 - Vulnerability in software is unavoidable and continues to appear
 - Vulnerable security products are already deployed

Security Issues on Current Internet (2/2)

Sophistication & Automation of Attack Tools

- Attack tools / toolkits are becoming more sophisticated, automated, easy to use & hard to trace back
- No specific knowledge required to mount attacks
- Global collaboration for attack is getting more common.

More Distributed Networking / Applications Emerging

- Distributed file sharing/computing
- Peer-to-peer networking, home networking
- Ubiquitous computing

Passive & Active Attacks

- Passive
 - Sniffing
 - Wiretap
 - TEMPEST : detecting information from Transient Electromagnetic Pulse
 - Social Engineering

Active (Program)

- Worm (independent) : program that replicates itself through network
- Logic bomb : malicious instructions that trigger on some event in the future, such as a particular time setting
- Trojan horse : program that does something unexpected (and often secretly)
- Trapdoor : an undocumented entry point intentionally written into a program, often for debugging purposes, which can be exploited as a security flaw
- Virus : program fragment that, when executed, attach itself to other programs

Security Solutions for Current Internet

7

Security Solutions for Networks

Client

Examples: IPSec, SSL/TLS/WTLS, SSH …

Status of Current Internet Security

Limitation on current security technology

- Separation of security function from network
 - Independent deployment of virus vaccine, spam filter, IDS, Firewall, VPN, etc, in each layer and application whenever necessary
- Passive detection and prevention
 - Passive reaction by relying on the decision of human
 - Long delay until action, which allows additional attacks
- More importantly, integrated end-to-end security measures are not available
 - Local detection of worm, DDS and BoT
 - Each domain has its own security measures
 - No correlation among security technologies
 - No integrated end-to-end security measures

Contents

- Introduction
 - Current Internet
- Security and Privacy Issues on Current Internet
- Future Internet
 - Challenges
 - Requirements
- Security Issues on Future Internet Architectures
- Conclusion

What is the Future Internet?

Future Internet

- Clean Slate design of the Internet's architecture to satisfy the growing demands
- Management issues of Future Internet also need to be considered from the stage of design
- Research Goal for Future Internet
 - Performing research for Future Internet and designing new network architectures
 - Building an experimental facility

Features of Future Internet Architecture

Virtualization

Virtualizes network resources and provide customer-specific services

Service-Oriented Architecture (SOA)

- Define layer's functions as services and converge the services to support the network operations
- Register services, discover services in repository and acquire necessary services
- Cross-layer design
 - Divide network layers and support a cross-layer mechanism

Why need the Future Internet Security?

Change of the security paradigm

Security is no more an option

Reference: Security research in Future Internet, Korea-EU ICT forum

Challenges for Security

- Current Internet
 - No explicit consideration on security
- New security architectures, models and frameworks should address the emerging vulnerabilities and threats
- Challenges for security
 - Managing and protecting the identity of billions of networked persons, devices, services and virtual entities connected in the Future Internet
 - Securing the interactions and interfaces from heterogeneous ICT (Information and Communication Technology) systems and engineering with scalable security policies across the Future Internet
 - Securing critical infrastructures that are interdependent and controlled through vulnerable networks
 - Security of highly distributed virtual entities and trusted infrastructures based on virtualized communication, computing and storage resources

Challenges for Privacy

- Current Internet
 - Leaving a life-long trail of personal data
- In the Future Internet new tools and policies should be developed
 - Provide user-centric identity management
 - Protect life-long privacy of users and their personal entities

Challenges for privacy

- Understanding and developing privacy-friendly identity management schemes
- New frameworks and reference architectures integration
 - Fragmented approaches for managing personal information and for sharing data exchanged under user's control

Security Requirements (1/3)

Availability

- Should achieve a level of availability suitable
 - For "mission-critical" activities
 - For continued operation in times of crisis and attack

Dealing with the end-node

- Most vexing issues today
 - The poor state of end-node security
 - The implications for the overall security state of the network
 - End-node problems
 - Zombies, phishing, spam, spyware, and viruses
- Future Internet Security should take a considered and defensible position on the role of the network in protecting and supporting the end-nodes
- Proposed a consistent division of responsibility between the network, the end-node system, and the application

Security Requirements (2/3)

Usable security

- Good security makes a system hard to use
- The most desirable security tools are those are not "best"
- Creating mechanisms that are easy to use

Flexible outcomes

- Different contexts call for different degrees of security
 - A corporation, the government and an individual may have different needs and expectations
- An architecture should not dictate one outcome
 - Should allow the level of security to be turned to the task at hand
 - Should try to give that control to the end-users as possible

Security Requirements (3/3)

Coherent design

- How the various security mechanisms fit together to provide a consistent and coherent security outcome
- This requirement is not a call for a uniform security outcome

Security for tomorrow's devices

- Today's Internet is populated by work stations and server, and smaller devices such as PDAs
- Tomorrow's world will be populated by even smaller devices, embedded processors and sensors

Contents

- Introduction
 - Current Internet
- Security and Privacy Issues on Current Internet
- Future Internet
 - Challenges
 - Requirements
- Security Issues on Future Internet Architectures
- Conclusion

Security Issues on Future Internet Architectures 20

No successful solutions

Trade-offs

- Between usability and security
- Between identity and privacy

Models for Future Security Architectures

- Network centric security architectures
- Host centric security architectures

Trends of Future Internet

Models for Future Security Architectures (1/2)

Network centric security architectures

- Advantages of perimeter-based security models
 - They focus on site security definition, management, enforcement and auditing at a very limited number of points in the network
 - Perimeter security points are under the total control of enterprise security organizations
 - The most highly maintained and monitored assets in enterprise network infrastructures

21

Models for Future Security Architectures (2/2)

Host centric security architectures

- Traditional perimeter models are becoming obsolete
 - Because the growing impotence and acceptance
 - Nomadic devices, self organizing systems (e.g., Ad hoc), environments with untrusted local links (e.g., public wireless access points)
- But, host centric security architecture is immature
- Possibility of host centric security architecture with the use of IPv6
 - Better suited to enable such host centric security models
 - IPv6 is provision of globally unique and routable address
 - Mandatory support of IPSec in all implementations

Trends of Future Internet

- **US**
 - FIND (Future Internet Design) December 2005
 - GENI (Global Environment for Network Innovation) August 2005
- Europe
 - FIRE (Future Internet Research and Experimentation Activities), 2007
- **KOREA**
 - Future Internet Forum, 2006

US - FIND

What is FIND?

- Major new long-term initiative of NSF NeTS research program
- Funded project seeking to design a next-generation Internet called the 'Future Internet'

Security goal of FIND

• A Future network must offer greatly improved security and robustness

Security Issues

- How can we design a network that is fundamentally more secure and available than today's Internet?
- How would we conceive the security problem if we could start from scratch?
- How do we protect the control traffic?
 - Ensure only authorized users can configure
- How should the network protect against DoS?

US - GENI

• What is GENI?

- A planning effort initiated by the NSF CISE Directorate
- Experimental facility to validate research (infrastructure to demonstrate research)
- A nationwide programmable facility for research into Future Internet technologies

Security Goal

- GENI should be secure, so that its resources cannot accidently or maliciously be used to attacking today's Internet
 - To use technical and operational means to prevent, detect, and manage attacks
 - To render the GENI system to be both safe and usable

Security Issues

Security Issues

- How security should be architected into globally distributed systems of networks and computers?
- How to design the access control framework?
 - E.g., Authentication and authorization architecture
- How the end users protect against DoS?
- GENI is needed to ascertain the circumstances
 - Privacy policies would impose on the efficiency or the possibility of completing access proofs

UE – FIRE

• What is FIRE?

 An activity or initiative aims to scope and consolidate the European work in networking testbeds

Goal

 Aims at providing a research environment for investigating and experimentally validating highly innovative and revolutionary ideas on future Internet

Security and Privacy Issues in FIRE

Security Issues

- How to protect the Future Internet and Current Internet's against emerging threats?
- How to protect the end-users and their devices?
- Self-protected and resilient networks and service platforms?
- How to measure and assess the security of Future Systems?

Privacy Issues

- How to deal with "identities" of billions of entities?
- Who is going to be a manage for the ID?
 - User or Big brother
- How to protect our personal sphere?
 - User centricity or Big brother

Korea - FIF

Future Internet Forum (FIF)

First forum meeting –September, 2006

- First stage: to June, 2007
 - Review prior activities related to future Internet research
- Second stage
 - Propose areas that we can contribute most
 - Problem definition

Topics

- Naming, routing
- Large-capacity switching
- Wireless networking
- LBS & context-aware services

Summary

Change of the security paradigm

• Security is no more an option

Existing various challenges

- For security
- For privacy

Existing various security requirements

- Availability, Dealing with the end-node, Usable security, Flexible outcomes, Coherent design, and Security for tomorrow's devices
- But, No successful solutions so far!

Thank you!

