Future Network Architecture for Mobility Control (= Separating of Control and Forwarding)

> Jin Seek Choi jinseek@hanyang.ac.kr Agent based Network Lab (ANL) http://www.hanyang.ac.kr/~jinseek/

Outline

- Background-What is Internet?
 - Internet & Web
 - Future Network can be derived from clean-slate approach.
- Agent based IP (AIP) for Future Network Architecture
 - IP Glue : IP Packet forwarding & IP Global Identifier.
 - Basic Principle in separating of Node ID & Location ID
 - Basic Principle in L2 Forwarding for Transport
- Conclusion
 - Agent based Address Resolution Protocol for Mobility
 - Separating IP control/Forwarding Plane for L2 Transport

Ethernet Forum Workshop, Nov. 2007 Background: Internet & WEB Platform

Background: Why need you Future Internet?

Internet is becoming a critical part of an socio economic infrastructure

Net-delivered services are reshaping the world (search, media, games etc.)

Addition of billions of new devices, mobile, machine and sensors.

• **Tomorrow's users** will be surrounded by pervasive devices, embedded sensors and systems... all connected to the Internet.

Lack of robustness, mobility, security, QoS and Management scheme.

not economically sustainable & III-suited for emerging technologies

Clean Slate approach

Some fundamental issues that cannot be fixed incrementally with patches.

Background:Why need a clean-slate approach?

Internet can support P1. Packet Multiplexing **P2.** Application Transparency P3. Universal connectivity P4. End-to-End argument **P5.** Subnet heterogeneity P6. Common Bearer Service **P7.** Packet Forwarding context P8. Global addressing **P9.** Stateless Routing P10. Protocol Layering Internet \rightarrow IP (Control: naming & Addressing) + IP(Transport: IP Addressing & Routing)

Internet not support P11. Security
P12. Congestion Control
P13. Resource Allocation
P14. Mobility

> Internet → IP (Control: naming & Addressing) + L2(Transport: L2 Packet forwarding)

Background: What is Future Internet?

Agent based IP for Future Network Architecture

AIP

(w.r.t. Mobility Extension &L2 Forwarding Extension)

IP becomes a control Protocol! Ethernet is a high-speed L2 Packet switching!)

WiMAX Forum Conference, January 2007

Seamless Future Networks

= Interworking with various access networks & Federated Facilities

Why we need **IP** for Future Network?

- IP is the glue of Internet (All hosts and routers run IP)
 - <u>Store & Forward datagram</u>
 - Packet switched network with global scalability
 - <u>Stateless architecture</u>
 - no per flow state inside network

Critical Problems in IP Protocol

- IP is the glue of Internet.
 But (∵ IP (ID) = Location) → IP (ID) ≠ Location
 need a Mobility Control
- IP is a Packet Switching based on Hop-by-hop Routing → high-speed L2 Forwarding need a High-Speed L2 Forwarding

Agent Based IP (AIP) - separating of ID and Location - Mobility Extension in AIP - Extension of L2 Forwarding

Agent based Address Translation (or MARP) protocol & Routing Cache Update & Query

{MN's IP+ISP ID} is an End point identifier for Internet

- {IP+ISP} is an End point identifier for Future Internet
- E.g., ID is "<u>홍길동' at 유성, Korea</u>"

What is the IP connectivity?

{MN's IP+ISP ID} is a Transport end-point

• <u>{MN's IP+ISP ID} is a</u> transport end-point(유성의 홍길동에게 가는 길)

What is the IP Movement? **{MN's IP+Location IP} is a Routing directive for Router**

• Connectionless datagram (per packet basis)

Further Extension in AIP

Design Example1: IPv4 transport & IPv6 Access

Design Example2: IPv4 transport & IPv4 Access

Mobility Extension in AIP

Basic Operation of AIP

Location Update procedure in AIP

Routing Update procedure in AIP

Agent Based IP (AIP) Extension of L2 Forwarding

IP is a Routing Directivity but not transport directivity

• <u>{IP} is a Routing Directivity at each Router</u> (홍길동에게 가는 길)

Ethernet can guarantee a transport directivity

• <u>Ethernet can guarantee</u> transport directivity in the network

Critical Problems in Ethernet Protocol

• Ethernet is a self-learning Network, So, it is not scalable! (``every endpoint MAC ID should be studied within the whole network)

 Ethernet is a Packet Switching Network based on end-point MAC → high-speed L2 Forwarding but not hierarchical domain & need a MAC learning within the network

Agent Based IP (AIP) Extension of L2 Forwarding

Hierarchical Bridge (Provider Bridge+Provider Backbone Bridge) MAC-in-MAC Address Resolution

L2 Transport in AIP = Hierarchical Bridge

L2 Transport (Self-learning in each segment)

- Endpoint MAC ID will be studied within the segment.
- Ethernet Packet Switching based on end-point MAC, I.e., only need a MAC learning within the segment
- Access agent forwards packet to the access agent through multiple segments based on MAC-in-MAC addresses.

L2 Transport (MAC-in-MAC Registration)

31/35

Candidates for Future Network

- Provide continuous IP connectivity to Future IP device (mobile users as well as Fixed terminal users)
 - Q:What is the meaning of IP address (IP Glue)?
 - A: IP Address is used to manage the node across the Internet
 - An end communication entity (Identifier)
 : (End point identifier for transport and application layer)
 - Reachability for communication entity (Location)
 : IP Routing directive for distributed control in Packet switching
- Ethernet Switching/Forwarding with global Scalability
 - Q:What is the meaning of L2 switching? \rightarrow High-speed Packet switching
 - (A: Fast Forwarding)
 - High-speed L2 Switching but not L3 Switching
 - End-to-End Connectivity

Conclusion: Future Network Strategies

- Future Network = IP Network ? [IP+Transport]
 - Internet \rightarrow IP (transport) + Control IP (MIP, SIP, ...)
 - Internet → IP (Control) + Transport IP (IP naming & addressing)
- Key Idea (add an control protocol)
 - MARP \rightarrow IP Mapping to Location of the terminal
 - MARP \rightarrow enable interworking with IPv4 & IPv6
 - MARP \rightarrow enable interworking with 4G & IP
 - MARP→ enable interworking with L2 High-speed transport