The Role of IP Address in the Internet Architecture

Lixia Zhang UCLA

Asia Future Internet Summer School August 2008

Disclaimer

- Personal observations and understanding
- Presented for discussion

Why Talk about IP Address

- A fundamental building block in the original Internet architecture
- In articulating a future Internet architecture:
 - Would it still have IP address as a fundamental building block?
 - If so, what should be the new role of IP address?
 - If not, what is the replacement?
- \rightarrow How do we answer these questions?

In the Original Internet Design

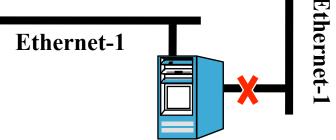
An IP address

- identifies <u>an attachment point</u> to Internet
- has the following basic properties:
 - Globally unique
 - Globally routed
 - Globally visible
 - \rightarrow a foundation for end-to-end model
- used in the following functions:
 - E2E datagram delivery to specified destinations
 - borrowed by TCP as part of connection identifier

Function 1: Datagram Delivery

From "The Design Philosophy of the DARPA Internet Protocols" SIGCOMM'88

- Primary goal: developing an *effective* technique for multiplexed utilization of all existing networks
- Second goal: Continued operation despite partial (physical component) failures


The Internet Started Simple

- Different networks connected through gateways
- All gateways trying to find best paths to forward all packets
- Datagram routing: which way to forward each packet towards its *destination address*?
 - Routing entry granularity: *network*
- There was no "Internet service provider" at the time

→All networks were equal
→All addresses *provider-independent*

IP address *is* topological dependent

- From RFC791 IP Specification: "provision must be made for a host to have several physical interfaces to the network with each having several logical internet addresses."
- A 2-way multihomed host may have one interface failed but still reachable through another
- but a TCP connection using the IP address of the failed interface will fail!

Why TCP borrowed IP address as part of its connection identifier

- Each TCP connection wanted a globally unique connection identifier
 - To assure each packet being delivered to the right connection
- IP address is globally unique
 - any identifier derived from it is also globally unique
- It's an engineering design decision

Consider the alternative:

- Had the TCP design required a host ID from a separate identifier space, this topologyindependent host ID would allow a TCP connection to persist over IP address changes
- But the benefit would show up only if
 - the host is multihomed
 - A failure occurred during a TCP connections life time, or
 - the host changes IP address during a TCP connection's life time

Is the benefit worth the cost?

- Need to answer this question in the context of 30 years ago
- Unclear benefit?
 - At the time: single-homed hosts dominate
 - No host mobility?
 - Perhaps connections were short-lived?
- Clear costs:
 - Managing another identifier space
 - Requiring a mapping system to match a host ID to the corresponding IP address

Weighing the benefit, saving, simplicity

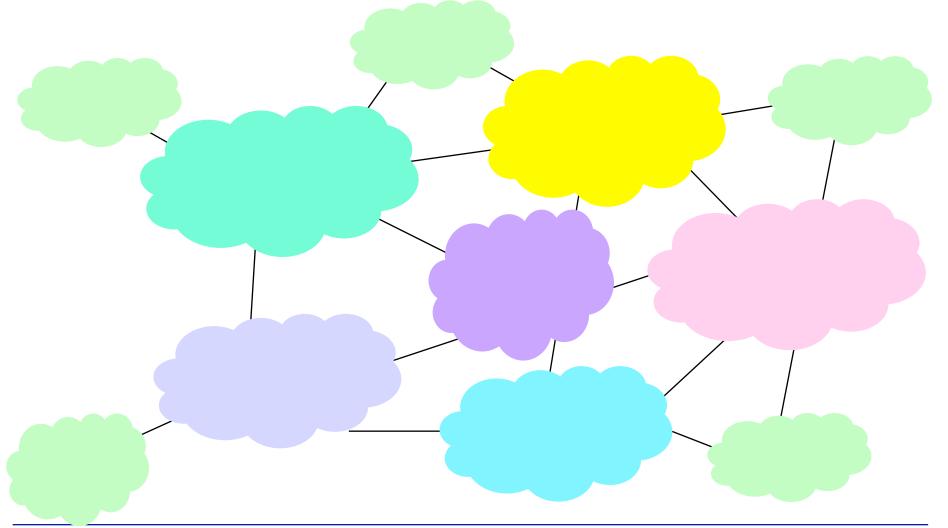
- Using IP address as connection identifier is the *simplest* design to reach the entity the identifier identifies
 - With little loss of benefit (at the time)
 - A SSN is a unique identifier, but does not say anything about where to find the person
- In addition: making it difficult to hijack a TCP connection
 - An IP address cannot be easily hijacked as long as the routing system is not compromised
 - This fact has been used for security enhancement, e.g. TCP SYN cookie

Engineering design versus "correctness"

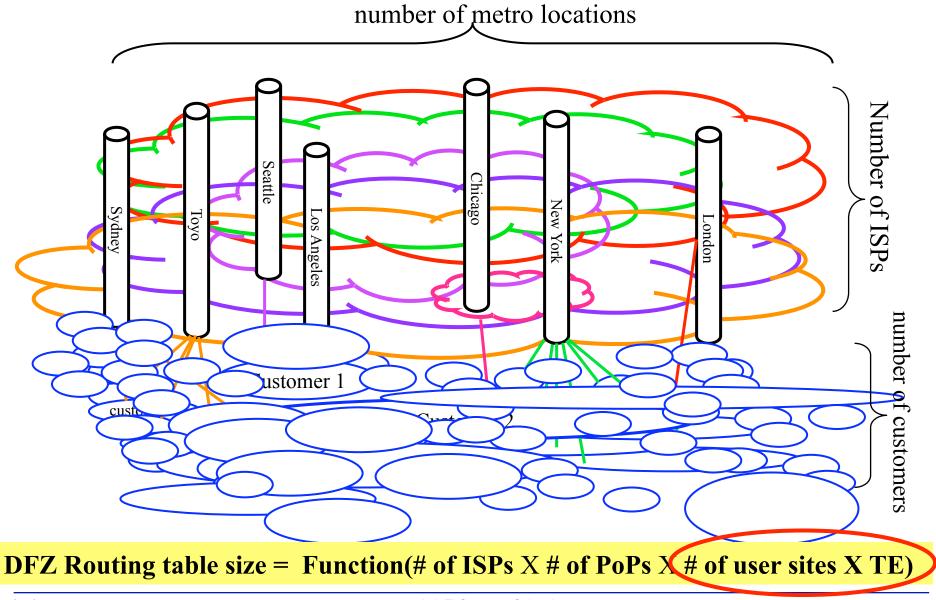
- Protocol design is engineering
- When a host is connected through a <u>single</u> interface, IP address semantic overload worked out quite well
- This semantic overloading represents a good engineering design tradeoff <u>under the given</u> <u>condition</u>
 - If/when the conditions change, the conclusion is likely to change as well

What have changed since 1981?

- First and foremost: Internet has grown by orders of magnitude!
 - Beyond the wildest dreams of the original designers
 - NAT deployment became pervasive

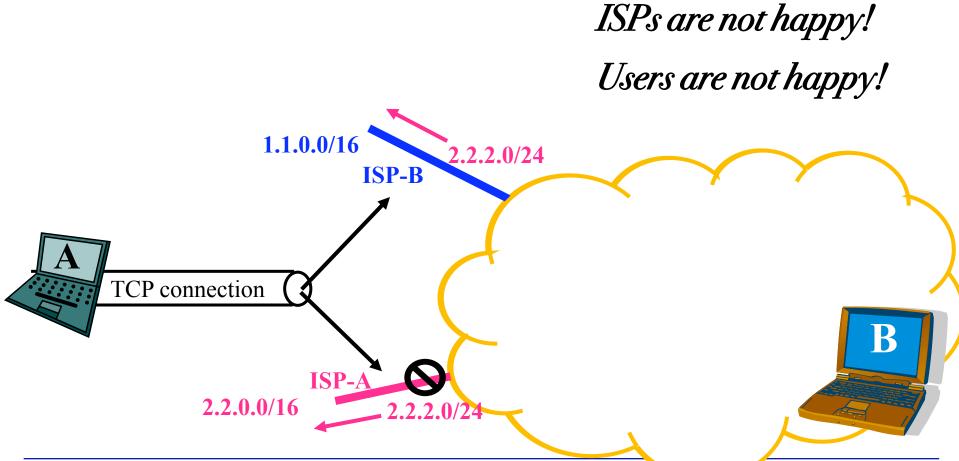

"A Retrospective View of Network Address Translation" IEEE Network September 2008

- Site multihoming
- Host multihoming
- Mobility

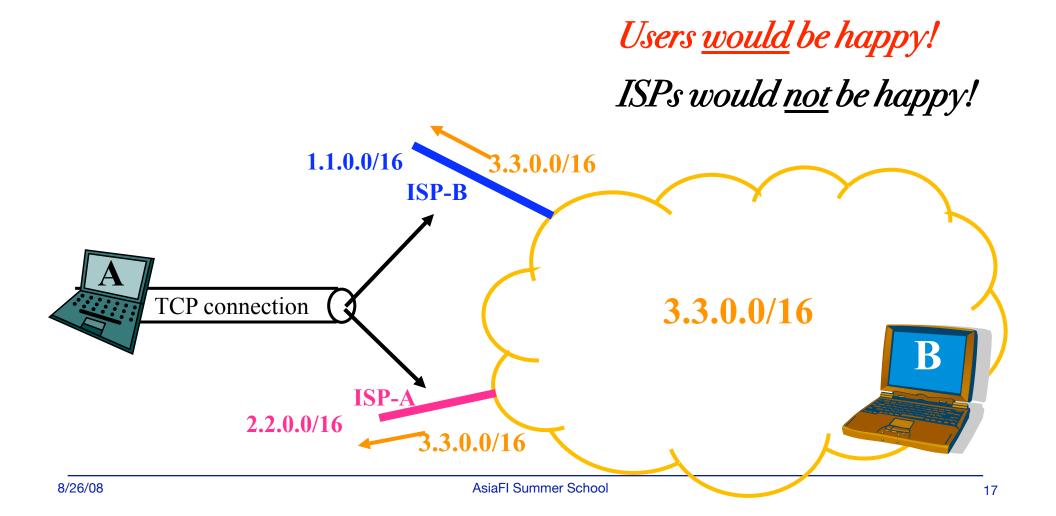

Ever increasing security threats

How Networks Look like Today

When we draw network graphs, it tends to look like this


But in reality, it is more like this

We now have ISPs \rightarrow 2 new things happened

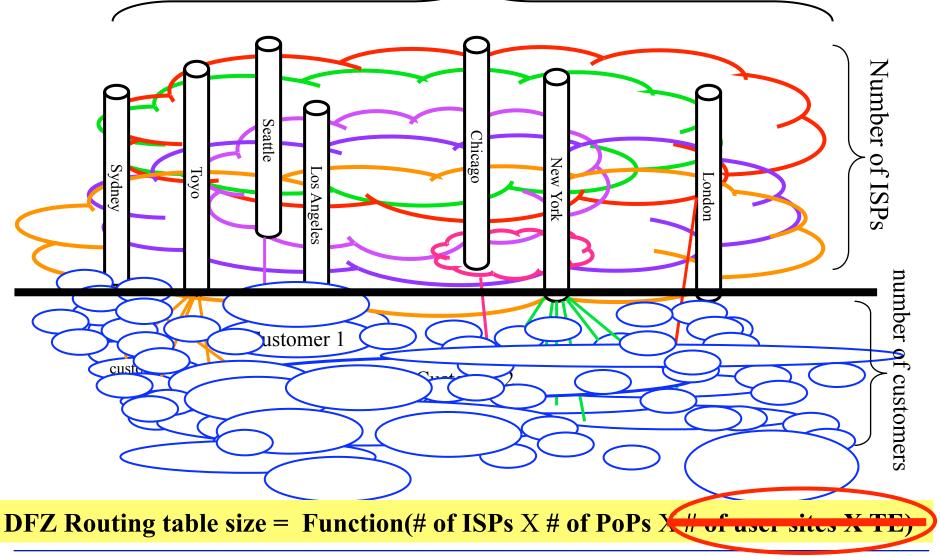

Provider-Assigned address (PA)

• User site multihoming

Provider-Independent Addressing

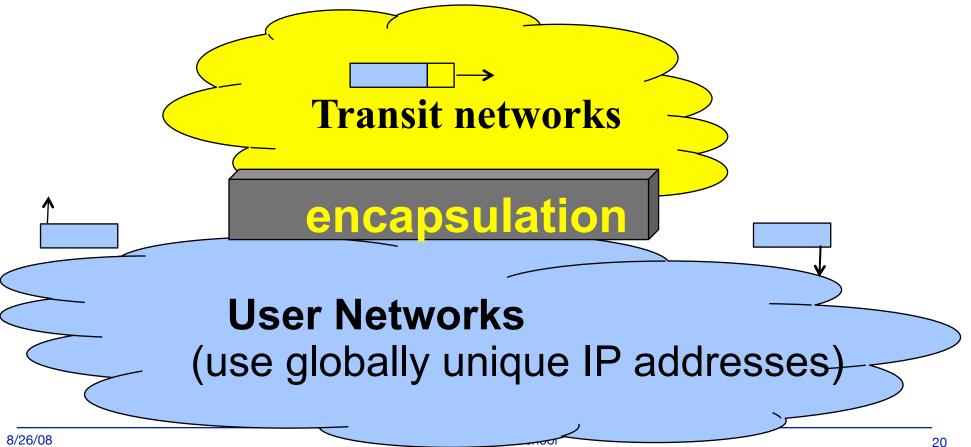
• User site multihoming

Tensions between user sites and providers

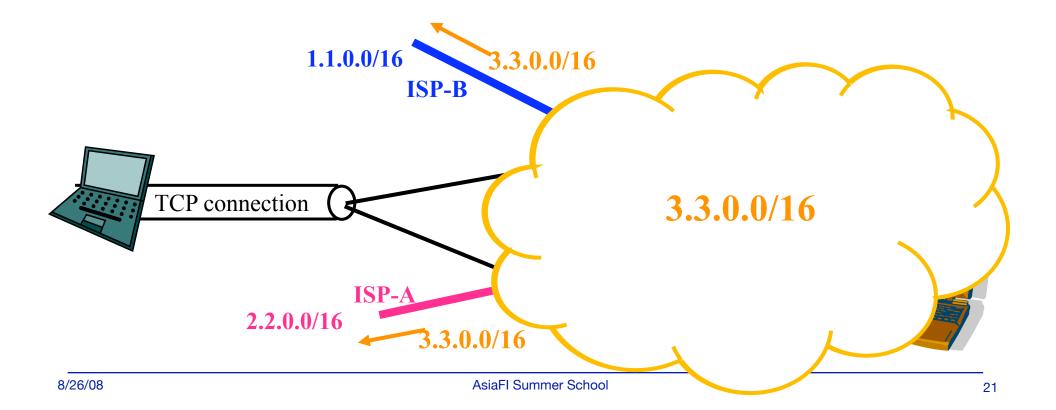

- Providers want provider-based addressing, which can be aggregated to scale the routing system
- User sites want Provider Independent (PI) address
 - Most user sites are multihomed today
 - no one desires renumbering
- \Rightarrow Head-on conflict
- \Rightarrow Whoever paying wins

The result: ever increasing global routing table size

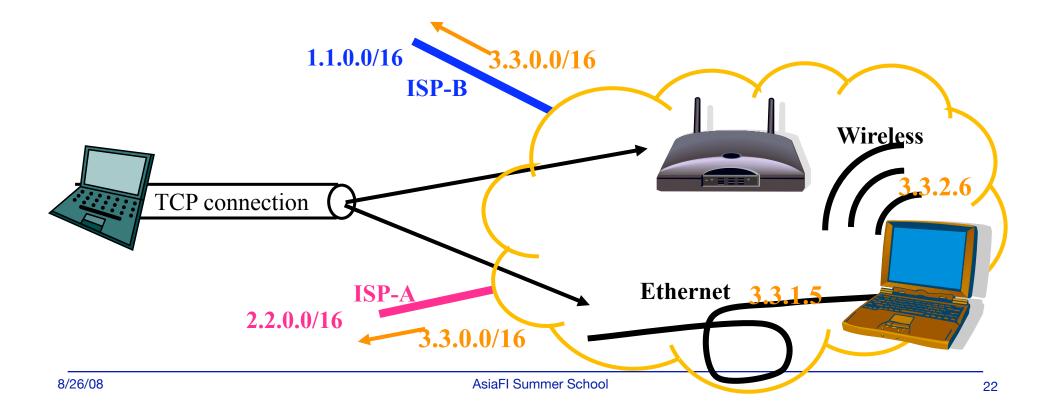
Proposed solution:


Removing PI prefixes from global routing system

number of metro locations


One class of solution: Map-n-Encap

- First proposed in RFC1955
- Changing the scope of IP address routability
 - See more details in tomorrow's talk


Host Multihoming

- TCP uses IP address as part of connection identifier
- IP address identifies one attachment point!

Host Multihoming

- TCP uses IP address as part of conn. identifier
- IP address identifies attachment point!

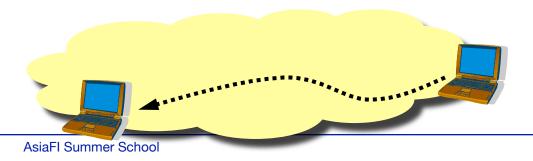
Do we need a host identifier now?

- Technology advances → multihomed hosts dominant
 - Desktop, laptop, pulm top
- The condition 30 years ago (single-homed hosts) changed forever
- If one wants to identify a host independent from its connectivity → need a host identifier

Addresses, Identifiers, locators: Exactly what are we separating from what?

- Providers: want topologically aggregatable address prefixes
- Sites: want <u>provider-</u> <u>independent</u> address blocks
- TCP (high level protocols in general): want <u>IP</u> <u>address-independent</u> endpoint identifiers

To scale DFZ routing: separate these two


> To make TCP conn. survive change of delivery path: *separate* IP-addr and end identifiers

Technology advances \rightarrow Arising of Mobility

- Mobility of individual hosts
- Mobility of all the nodes in a network (Ad hoc networks)

Supporting host mobility

- Goal: delivering packets to the right IP *interface* in the *global* Internet
- IP address: defines attachment point
- Moving from one place to another ⇒ change of IP addresses
- The *fundamental* design question: *who/where* to keep the state (=new address) of a moving host?

Mobile IP design

- Who: individual mobile hosts to choose
- Where:
 - Within IP layer
 - Outside network routing infrastructure
- How: let the moving host report back to its chosen home agent
- *Simplest* fix to support host mobility
 - In general "*simplest*" is unlikely to yield "*optimal*" performance

Is mobile IP design a patch-on?

- Yes it *was* added on later
- If we were to start from scratch, would it have been done differently?

Many alternative designs possible

- The network routing infrastructure could take over the responsibility of keeping tracking mobile hosts
- The address change could be directly reported to a name lookup service
 - Keeping state outside (above) IP layer
- And a number of others
- Q: how do we judge which one is better?

What should be our yardstick for measure?

- Scalability as #1 objective
 - We'll see increasing number of mobile devices
- Delegation of responsibility
- Keep it simple; Must be prepared for things to go wrong
- Performance is important, but below any of the above
 - Performance is always second to reachability

Does Mobile IP Design Measure UP?

- Keeping mobile state at "home agent"
- \rightarrow No impact on routing scalability
- \rightarrow Keep the matter in your own hand
 - One implements/chooses his own home agent right!
 - X's mistake has no impact on Y
 - Pre-settlement for relation/accounting/security

Admittedly,

- Not giving highest possible performance
 - Especially in case of a single home agent
- Not very efficient
 - Especially when facing rapid host movement
 - Additional engineering improvement possible

Is Ad hoc networking a different beast?

topology

changing Fixed

Topology does change

- semi-static structure
- link/node failures
- routing: Baran's hot-potato flooding ⇒
 separate routing protocols for scalability

Structure-free ⇒ host routing
Resource constrained ⇒ On-demand routing
To handle high dynamics ⇒ flooding
To scale better ⇒ Cluster/landmark routing
Moving towards structured routing

IP Address Today

- IP address is still used for data delivery
 - topological dependency unchanged
- Pervasive IPv4 NAT deployment led to a large number of hosts using addresses that are
 - > No longer globally unique (locally unique), nor globally routed (locally routed)
- Plethora solutions to mobility support
- What have changed/may change:
 - The scope of uniqueness
 - The scope of routability
 - The need for indirection

The changing nature of IP address

- Wide existence of private IP addresses (RFC1918)
 - with *scoped uniqueness*
 - Private: non-visible outside the local scope
- The usefulness (or lack of it) of IP addresses with scoped visibility
 - Do addresses of scoped visibility have value (for some purpose)?
 - If so, should they be globally unique?
- IP addresses with *scoped routability*
- In addition: the need for connectivity-independent node identifier
 - and how many different name spaces may be necessary?

IP Address and Internet Security

- On day one: it's given that each packet carried correct source IP address
- Today: source address spoofing as one of the malicious attacking weapons
- One needs explicit effort to *enforce* correct source address
- It is important to do so
 - Measuring network traffic: monitoring
 - Identifying problems: diagnosis
 - Identifying attackers: mitigation

Summarizing

- IP address remains a fundamental building block in the architecture
- IP address is used for packet delivery, as such they are topology-dependent to make routing scale
 - Mobility being handled outside the routing system
- Multihoming occurring with multiple granularity, leading to necessary changes to the original use of IP address
- Understand scoped uniqueness, visibility, routability: their roles and implications on the overall Internet architecture

Look into future

- The fundamental value of IPv6: restore IP address' global uniqueness
- Global visibility: Different views on whether allowing private IPv6 address
 - If allow: should it have guaranteed globally uniqueness?
- Global routability: May not stay, to make routing scalable

AsiaFI Summer School

Separating uniqueness from routability

Thank you!

Questions?

lixia@cs.ucla.edu