
NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Unleashing Middleboxes with
New Programming Abstraction

KyoungSoo Park
In collaboration with

Asim Jamshed, Donghwi Kim, YoungGyun Moon, Dongsu Han
Department of Electrical Engineering, KAIST

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Network Middlebox
 Networking devices providing functionalities other than

forwarding/routing
• Switches/routers = L2/L3 devices
• All others are called middleboxes

2

NAT Firewalls

IDS/IPS

L7 protocol analyzers

Web/SSL proxies

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

My Research = Middlebox Research

 Built TCP proxies until 2011
• Mostly scalable CDN systems

 Dived into complex (=dirty) programming environments from 2012
• Packet + flow-level intrusion detection systems (Kargus, Haetae)
• Packet + flow-level traffic monitoring (Monbot)
• Packet + flow-level traffic accounting (Abacus)

3

2002 2004 2006 2009 2011 2012 2013

Graduate
school

CoDeeN CDN
(USENIX’04)

CoBlitz CDN
(NSDI’06)

HashCache Proxy
(NSDI’09)

SSLShader
(NSDI’11)

Kargus
(CCS’12)

Monbot
(Mobisys’13)

Abacus
(NDSS’14)

2014

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Middleboxes are Increasingly Popular
 Middleboxes are ubiquitous

• # of middleboxes =~ # of routers [NSDI’12] (Enterprise)
• Prevalent in cellular networks [SIGCOMM’11]
• Network functions virtualization (NFV)
• SDN controls network functions

 They provide key functionalities in modern networks
• Security, caching, load balancing, etc.
• Original Internet design lacks many features

4

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Stateful Middleboxes Dominate the Internet

 95+% of the Internet traffic is TCP [1]

5

TCP
UDP
etc

[1] Comparison of Caching Strategies in Modern
Cellular Backhaul Networks, MobiSys 2013.

State management is complex and error-prone

 Most middleboxes deal with TCP traffic
• Stateful firewalls
• Protocol analyzers
• Cellular data accounting
• Intrusion detection/prevention systems
• Network address translation
…

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Example: Cellular Data Accounting System

 Custom middlebox application
 No open source projects

6

Data Accounting System

Gateway

Cellular Core Network

Internet

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Develop an Cellular Data Accounting System
For every IP packet, p
sub = FindSubscriber(p.srcIP, p.destIP);
sub.usage += p.length;

7

Charge for
retransmission?

TCP tunneling
attack? [NDSS’14]

Logically, simple
process!

For every IP packet, p
if (p is not retransmitted){

sub = FindSubscriber(p.srcIP, p.destIP);
sub.usage += p.length;

}

South Korea

For every IP packet, p
if (p is not retransmitted){

sub = FindSubscriber(p.srcIP, p.destIP);
sub.usage += p.length;

} else { // if p is retransmitted
if (p’s payload != original payload) {

report abuse by the subscriber;
}

}

Attack Detection

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Cellular Data Accounting Middlebox
 Core logic

• Determine if a packet is retransmitted
• Remember the original payload (e.g, by sampling)
• Key: TCP flow management

 How to implement?
• Borrow code from open-source IDS (e.g., Snort/Suricata)
• Problem: 50~100K code lines tightly coupled with their IDS logic

 Another option?
• Borrow code from open-source kernel (e.g., Linux/FreeBSD)
• Problems: kernel is for one end, different from middlebox semantics

 What is the common practice? state-of-the-art?
• Implement your own flow management
• Problem: repeat it for every custom middlebox

8

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Programming TCP Application

 Berkeley socket API
• Nice abstraction that separates flow management from application
• Write better code if you know TCP
• Never requires you to write TCP stack itself

9

TCP application

Berkeley Socket API

TCP/IP stack

User level

Kernel level

 Typical TCP applications

• Middlebox logic
• Packet processing
• Flow management
• Spaghetti code?

No clear
separation!

 Typical middleboxes?

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

mOS Networking Stack
 Networking stack specialization for middleboxes

• Abstraction for sub-TCP layer middlebox operations
 Key concepts

• Separation of flow management from custom logic
• Event-driven middlebox processing
• Per-flow resource provisioning

 Benefits
• Clean, modular development of stateful middleboxes
• Developers focus on core logic rather than flow management
• High performance flow management on mTCP stack

10

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Operation Scenarios of mOS Applications

11

mOS monitor
(passive)

mOS monitor
(inline)

TCP flow processing

…
Multi-10Gbps traffic

Sender TCP stack Receiver TCP stack

Packet/flow abstractionPacket info TCP state TCP recv buf …

Application logicmOS app

mOS stack

mOS networking API
Packet/flow-level eventsEvent handler (callback)

core 0 core 1 core 2 core 3 core N

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

mOS Networking Stack Architecture

12

Custom
middlebox logic

mOS stack*

mOS socket API

User-level packet I/O library

Kernel-level NIC driver (DPDK/PSIO/PCAP)

Core 0

Custom
middlebox logic

mOS stack

mOS socket API

Core n…

NIC RX
Queue Symmetric Receive-Side Scaling (NIC)

mOS event ->
callback function

Thread
TCP flow management
Packet I/O

User
Kernel

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

mOS Flow Management

 Dual TCP stack management
• Infer the states of both client and server TCP stacks

 Example: a client sends a SYN packet
• Client-side state changes from CLOSED to SYN_SENT
• Server-side state changes from LISTEN to SYN_RECEIVED

13

mOS stack
emulation

Real
Client

TCP stack

Real
Server

TCP stack

Server side
TCP stack

Receive
bufferState

Client side
TCP stack

Receive
bufferState

P

P

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Programming Abstraction for Traffic Monitoring

 Event programming with mOS sockets
• Stream and raw monitoring sockets
• Abstraction for monitoring TCP connections
• Abstraction for monitoring IP packets

14

Custom
middlebox logic

mOS stack

mOS socket API

Separation of flow management
from custom middlebox logic!

Packets

Flow
context

Socket

User
context

Event
generation

Custom event handler

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

mOS Event
 Notable condition that merits middlebox processing

• Different from TCP socket events
 Built-in event (BE)

• Events that happen naturally in TCP processing
• e.g., packet arrival, TCP connection start/teardown, retransmission, etc.

 User-defined event (UDE)
• User can define their own event
• UDE = base event + filter function

– Raised when base event triggers and filter evaluates to TRUE
– Nested event: base event can be either BE or UDE
– e.g., HTTP request, 3 duplicate ACKs, malicious retransmission

 Middlebox logic = a set of <event, event handler> tuples

15

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Sample Code

 Initialization code
 Define a traffic filter and enforce it
 Define a user-defined event that detects an HTTP request
 Uses a built-in event that monitors a connection start event

16

static void

thread_init(mctx_t mctx)

{

monitor_filter ft ={0};

int msock; event_t http_event;

msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0);

ft.stream_syn_filter = "dst net 216.58 and dst port 80";

mtcp_bind_monitor_filter(mctx, msock, &ft);

mtcp_register_callback(mctx, msock, MOS_ON_CONN_START, MOS_HK_SND, on_flow_start);

http_event = mtcp_define_event(MOS_ON_CONN_NEW_DATA, chk_http_request);

mtcp_register_callback(mctx, msock, http_event, MOS_HK_RCV, on_http_request);

}

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

UDE Filter Function

17

static bool chk_http_request(mctx_t m, int sock, int side, event_t event)

{

struct httpbuf *p;

u_char* temp; int r;

if (side != MOS_SIDE_SVR) // monitor only server-side buffer

return false;

if ((p = mtcp_get_uctx(m, sock)) == NULL) {

p = calloc(1, sizeof(struct httpbuf));

mtcp_set_uctx(m, sock, p);

}

r = mtcp_peek(m, sock, side, p->buf + p->len, REQMAX - p->len - 1);

p->len += r; p->buf[p->len] = 0;

if ((temp = strstr(p->buf, "\n\n")) ||(temp = strstr(p->buf, "\r\n\r\n"))) {

p->reqlen = temp - p->buf;

return true;

}

return false;

}

 Called whenever the base event is triggered
 If it returns TURE, UDE callback function is called

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Event Generation Process

18

mOS stack

Sender Sender TCP
state updateP

Packet arrival

 Carefully reflects what a middlbox sees and operates on
 Based on the estimation of sender/receiver’s TCP states

• Packet arrival => sender’s state has already been updated
• Infer the receiver stack update with a new packet

Event generation
for sender TCP
state update

Receiver TCP
state update

Event generation
for receiver TCP
state update

Receiver

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Scalable Event Management
 Each flow subscribes to a set of events
 Each flow can change its own set of events over time

• Some flow adds a new event or delete an event
• Some flow changes the event handler for an event

 Scalability problem
• How to manage event sets for 100+K concurrent flows?

 Observation: the same event sets are shared by multiple flows
 How to represent the event set for a flow?
 How to efficiently find the same event set?

• When a flow updates its set of events?

19

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Event Dependency Tree
 Represents how a UDE is defined
 Start from a built-in event as root

20

ON_CONN_NEW_DATA

http_event

YouTube_request_event

ftp_event

e1

e8 e9

e11 e12

v1

s1 New flow

Points to a virtual root that has
a set of dependency trees

s2

on_yt_request

on_ftp_event

Event handler

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Update on Event Dependency Tree

 s3 adds a new event <e8, f8> to v3
 v4 is created with a new event and s3

points to it
 s2 adds the same event <e8, f8> to v3
 v4 already exists, but how does s2 find

v4?

21

v3

e1 e7

e9

e11

e10

f11

f10

v4

e1 e7

e9

e11

e10

f11

f10
e8
f8

s2 s3

socket

virtual root

built-in event

UDE

event handler

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Efficient Search for an Event Dependency Tree
 Each event dependency tree has an ID

• id (virtual root) = XOR sum of hash (event + event handler)
• id (v3) = hash (e11 + f11) ⊕ hash (e10 + f10)

 New tree id after adding or deleting <e, f> from t
• id (t’) = id (t) ⊕ hash (e + f)
• Add <e8, f8> to v3?

– id(v4) = id(v3) ⊕ hash (e8 + f8)
• Remove <e10, f10> from v4?

– id (v5) = id(v4) ⊕ hash (e11 + f11)

22

v3

e1 e7

e9

e11

e10

f11

f10

v4

e1 e7

e9

e11

e10

f11

f10
e8
f8

v5

e1 e7

e10
f10

e8
f8

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Current mOS stack API

Socket creation and traffic filter
int mtcp_socket(mctx_t mctx, int domain, int type, int protocol);
int mtcp_close(mctx_t mctx, int sock);
int mtcp_bind_monitor_filter(mctx_t mctx, int sock, monitor_filter_t ft);

User-defined event management
event_t mtcp_define_event(event_t ev, FILTER filt);

int mtcp_register_callback(mctx_t mctx, int sock, event_t ev, int hook, CALLBACK cb);

Per-flow user-level context management
void * mtcp_get_uctx(mctx_t mctx, int sock);

void mtcp_set_uctx(mctx_t mctx, int sock, void *uctx);

Flow data reading
ssize_t mtcp_peek(mctx_t mctx, int sock, int side, char *buf, size_t len);

ssize_t mtcp_ppeek(mctx_t mctx, int sock, int side, char *buf, size_t count, off_t seq_off);

23

17 functions are currently defined

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Current mOS stack API
Packet information retrieval and modification
int mtcp_getlastpkt(mctx_t mctx, int sock, int side, struct pkt_info *pinfo);

int mtcp_setlastpkt(mctx_t mctx, int sock, int side, off_t offset, byte *data, uint16_t
datalen, int option);

Flow information retrieval and flow attribute modification
int mtcp_getsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t *len);

int mtcp_setsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t len);

Retrieve end-node IP addresses
int mtcp_getpeername(mctx_t mctx, int sock, struct sockaddr *addr, socklen_t *addrlen);

Per-thread context management
mctx_t mtcp_create_context(int cpu);

int mtcp_destroy_context(mctx_t mctx);

Initialization
int mtcp_init(const char *mos_conf_fname);

24

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Fine-grained Resource Allocation
 Not all middleboxes require full features

• Some middleboxes do not require flow reassembly
• Some middleboxes monitor only client-side data
• No more monitoring after handling certain events

 Fine-control resource consumption
• Disable flow reassembly but keep only metadata
• Enable flow monitoring for one side
• Stop flow monitoring in the middle
• Per-flow manipulation with setsockopt()

25

// disabling receive buffers for both client and server stacks
int zero = 0;
if (!(config_monitor_side & MOS_SIDE_CLI))

mtcp_setsockopt(mctx, sock, SOL_MONSOCKET, MOS_CLIBUF, &zero, sizeof(zero));
if (!(config_monitor_side & MOS_SIDE_SVR))

mtcp_setsockopt(mctx, sock, SOL_MONSOCKET, MOS_SVRBUF, &zero, sizeof(zero));

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

mOS Networking Stack Implementation
 Per-thread library TCP stack

• ~26K lines of C code (mTCP: ~11K lines)
• Based on mTCP user level TCP stack [NSDI ‘14]
• Exploits parallelism on multicore systems

 Event implementation
• Designed to scale to arbitrary number of events
• Identical events are automatically shared by multiple flows

 Applications ported to mOS: ~9x code line reduction

26

Application Modified SLOC Output
Snort 884 79,889 HTTP/TCP inspection
nDPI 765 25,483 Stateful session management

PRADS 615 10,848 Stateful session management

Abacus - 4,091→486 Detect out-of-order packet retransmission

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Evaluation: Experiment Setup

 Operating as in-line mode: clients mOS applications servers
 mOS applications with mOS stream sockets

• Flow management and forwarding packets by their flows
• 2 x Intel E5-2690 (16 cores, 2.9 GHz)
• 20 MB L3 cache size, 132 GB RAM
• 6 x 10 Gbps NICs

 Six pairs of clients and servers: 60 Gbps max
• Intel E3-1220 v3 (4 cores, 3.1 GHz)
• 8 MB L3 cache size
• 16 GB RAM
• 1 x 10 Gbps NIC per machine

27

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Performance Scalability over # of CPU cores

28

1.42 1.23
4.07 3.25.02 4.5

16.66
11.63

22.84 21.7

53.03

42.46

0

10

20

30

40

50

60

 1 4 16 1 4 16

Th
ro

ug
hp

ut
 (
G
b
p
s)

(# of CPU cores)

Counting packets Searching for a string

64B file 8KB file

 Concurrent number of flows: 192,000
• Each flow downloads an X-byte content in one TCP connection
• A new flow is spawned when a flow terminates

 Two simple applications
• Counting packets per flow (packet arrival event)
• Searching for a string in flow reassembled data (full flow reassembly & DPI)

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Latency Overhead by mOS Applications

29

58.4

93.8 93.5
117.4

191.9 193.2

0

50

100

150

200

250

Direct connection Counting packets Searching for a

string

Fl
o
w

 c
o
m

p
le

ti
o
n

ti
m

e
(u

s)

64B file 8KB file

75us

35us

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Event Management Performance

 192,000 concurrent flows downloading large files
 mOS application searches for a string
 Increases the number of events per flow (4 to 64)
 mOS improves the performance by 3.5 to 17.3 Gbps

30

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Performance Under Selective Resource Consumption

31

19.67

23.22

35.47

39.22

56.68

29.6

34.18

46.43

51.9
59.97

0

10

20

30

40

50

60

 64 256 1K 4K 16K

Th
ro

ug
hp

ut
 (
G
b
p
s)

File size (B)

full flow management

w/o client buf management

w/o buf management

w/o client side

w/o client side, w/o server buf mgmt.

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Real Application Performance

32

Application original + pcap original + DPDK mOS port
Snort-AC 0.57 Gbps 8.18 Gbps 9.17 Gbps
Snort-DFC 0.82 Gbps 14.42 Gbps 15.21 Gbps
nDPIReader 0.66 Gbps 28.92 Gbps 28.87 Gbps
PRADS 0.42 Gbps 2.03 Gbps 1.90 Gbps

• Workload: real LTE packet trace (~67 GB)
• 4.5x ~ 28.9x performance improvement
• Mostly due to multi-core aware packet processing (DPDK)
• mOS additionally brings code modularity and correct flow

management

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Conclusion
 Current middlebox development suffers from

• Lack of modularity
• Lack of readability
• Lack of maintainability

 Key idea: reusable, common flow management for middleboxes
 mOS stack: abstraction for flow management

• Programming abstraction with socket-based API
• Event-driven middlebox processing
• Efficient resource usage with dynamic resource composition

33

NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Thank You!
 mOS API and documentation:

http://www.ndsl.kaist.edu/mos/
 We will release the source code soon!
 Questions?

34

http://www.ndsl.kaist.edu/mos/

	Unleashing Middleboxes with New Programming Abstraction
	Network Middlebox
	My Research = Middlebox Research
	Middleboxes are Increasingly Popular
	Stateful Middleboxes Dominate the Internet
	Example: Cellular Data Accounting System
	Develop an Cellular Data Accounting System
	Cellular Data Accounting Middlebox
	Programming TCP Application
	mOS Networking Stack
	Operation Scenarios of mOS Applications
	mOS Networking Stack Architecture
	mOS Flow Management
	Programming Abstraction for Traffic Monitoring
	mOS Event
	Sample Code
	UDE Filter Function
	Event Generation Process
	Scalable Event Management
	Event Dependency Tree
	Update on Event Dependency Tree
	Efficient Search for an Event Dependency Tree
	Current mOS stack API
	Current mOS stack API
	Fine-grained Resource Allocation
	mOS Networking Stack Implementation
	Evaluation: Experiment Setup
	Performance Scalability over # of CPU cores
	Latency Overhead by mOS Applications
	Event Management Performance
	Performance Under Selective Resource Consumption
	Real Application Performance
	Conclusion
	Thank You!

