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Network Middlebox
 Networking devices providing functionalities other than

forwarding/routing
• Switches/routers = L2/L3 devices 
• All others are called middleboxes
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My Research = Middlebox Research

 Built TCP proxies until 2011
• Mostly scalable CDN systems

 Dived into complex (=dirty) programming environments from 2012
• Packet + flow-level intrusion detection systems (Kargus, Haetae)
• Packet + flow-level traffic monitoring (Monbot)
• Packet + flow-level traffic accounting (Abacus)
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Middleboxes are Increasingly Popular
 Middleboxes are ubiquitous

• # of middleboxes =~ # of routers [NSDI’12] (Enterprise)
• Prevalent in cellular networks [SIGCOMM’11]
• Network functions virtualization (NFV)
• SDN controls network functions

 They provide key functionalities in modern networks
• Security, caching, load balancing, etc.
• Original Internet design lacks many features
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Stateful Middleboxes Dominate the Internet

 95+% of the Internet traffic is TCP [1]
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TCP
UDP
etc

[1] Comparison of Caching Strategies in Modern 
Cellular Backhaul Networks, MobiSys 2013.

State management is complex and error-prone

 Most middleboxes deal with TCP traffic
• Stateful firewalls
• Protocol analyzers
• Cellular data accounting
• Intrusion detection/prevention systems
• Network address translation
…
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Example: Cellular Data Accounting System

 Custom middlebox application
 No open source projects
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Develop an Cellular Data Accounting System
For every IP packet, p
sub = FindSubscriber(p.srcIP, p.destIP);
sub.usage += p.length;
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Charge for 
retransmission?

TCP tunneling 
attack? [NDSS’14]

Logically, simple 
process!

For every IP packet, p
if (p is not retransmitted){

sub = FindSubscriber(p.srcIP, p.destIP);
sub.usage += p.length;

}

South Korea

For every IP packet, p
if (p is not retransmitted){

sub = FindSubscriber(p.srcIP, p.destIP);
sub.usage += p.length;

} else { // if p is retransmitted
if (p’s payload != original payload) {

report abuse by the subscriber;   
}

}

Attack Detection
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Cellular Data Accounting Middlebox
 Core logic

• Determine if a packet is retransmitted
• Remember the original payload (e.g, by sampling)
• Key: TCP flow management

 How to implement? 
• Borrow code from open-source IDS (e.g., Snort/Suricata)
• Problem: 50~100K code lines tightly coupled with their IDS logic

 Another option?
• Borrow code from open-source kernel (e.g., Linux/FreeBSD)
• Problems: kernel is for one end, different from middlebox semantics

 What is the common practice? state-of-the-art?
• Implement your own flow management
• Problem: repeat it for every custom middlebox
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Programming TCP Application

 Berkeley socket API
• Nice abstraction that separates flow management from application
• Write better code if you know TCP
• Never requires you to write TCP stack itself
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TCP application

Berkeley Socket API

TCP/IP stack

User level

Kernel level

 Typical TCP applications

• Middlebox logic
• Packet processing
• Flow management
• Spaghetti code?

No clear
separation!

 Typical middleboxes?
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mOS Networking Stack
 Networking stack specialization for middleboxes

• Abstraction for sub-TCP layer middlebox operations
 Key concepts

• Separation of flow management from custom logic
• Event-driven middlebox processing
• Per-flow resource provisioning

 Benefits
• Clean, modular development of stateful middleboxes
• Developers focus on core logic rather than flow management
• High performance flow management on mTCP stack

10
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Operation Scenarios of mOS Applications
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…
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mOS Networking Stack Architecture
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mOS Flow Management

 Dual TCP stack management
• Infer the states of both client and server TCP stacks

 Example: a client sends a SYN packet
• Client-side state changes from CLOSED to SYN_SENT
• Server-side state changes from LISTEN to SYN_RECEIVED 
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Programming Abstraction for Traffic Monitoring

 Event programming with mOS sockets
• Stream and raw monitoring sockets
• Abstraction for monitoring TCP connections
• Abstraction for monitoring IP packets
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mOS Event
 Notable condition that merits middlebox processing

• Different from TCP socket events
 Built-in event (BE)

• Events that happen naturally in TCP processing
• e.g., packet arrival, TCP connection start/teardown, retransmission, etc.

 User-defined event (UDE)
• User can define their own event
• UDE = base event + filter function

– Raised when base event triggers and filter evaluates to TRUE
– Nested event: base event can be either BE or UDE
– e.g., HTTP request, 3 duplicate ACKs, malicious retransmission

 Middlebox logic = a set of <event, event handler> tuples

15
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Sample Code

 Initialization code
 Define a traffic filter and enforce it
 Define a user-defined event that detects an HTTP request
 Uses a built-in event that monitors a connection start event
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static void

thread_init(mctx_t mctx)

{

monitor_filter ft ={0};

int msock; event_t http_event;

msock = mtcp_socket(mctx, AF_INET, MOS_SOCK_MONITOR_STREAM, 0);

ft.stream_syn_filter = "dst net 216.58 and dst port 80";

mtcp_bind_monitor_filter(mctx, msock, &ft);

mtcp_register_callback(mctx, msock, MOS_ON_CONN_START, MOS_HK_SND, on_flow_start);

http_event = mtcp_define_event(MOS_ON_CONN_NEW_DATA, chk_http_request);

mtcp_register_callback(mctx, msock, http_event, MOS_HK_RCV, on_http_request);

}
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UDE Filter Function
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static bool chk_http_request(mctx_t m, int sock, int side, event_t event)

{

struct httpbuf *p;

u_char* temp; int r;

if (side != MOS_SIDE_SVR) // monitor only server-side buffer

return false;

if ((p = mtcp_get_uctx(m, sock)) == NULL) {

p = calloc(1, sizeof(struct httpbuf));

mtcp_set_uctx(m, sock, p);

}

r = mtcp_peek(m, sock, side, p->buf + p->len, REQMAX - p->len - 1);

p->len += r;  p->buf[p->len] = 0;

if ((temp = strstr(p->buf, "\n\n")) ||(temp = strstr(p->buf, "\r\n\r\n"))) {

p->reqlen = temp - p->buf;

return true; 

}

return false;

}

 Called whenever the base event is triggered
 If it returns TURE, UDE callback function is called
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Event Generation Process
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mOS stack

Sender Sender TCP 
state updateP

Packet arrival

 Carefully reflects what a middlbox sees and operates on
 Based on the estimation of sender/receiver’s TCP states

• Packet arrival => sender’s state has already been updated
• Infer the receiver stack update with a new packet

Event generation 
for sender TCP 
state update

Receiver TCP 
state update

Event generation 
for receiver TCP 
state update

Receiver
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Scalable Event Management
 Each flow subscribes to a set of events
 Each flow can change its own set of events over time

• Some flow adds a new event or delete an event
• Some flow changes the event handler for an event

 Scalability problem
• How to manage event sets for 100+K concurrent flows?

 Observation: the same event sets are shared by multiple flows
 How to represent the event set for a flow?
 How to efficiently find the same event set?

• When a flow updates its set of events?

19
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Event Dependency Tree
 Represents how a UDE is defined
 Start from a built-in event as root
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ON_CONN_NEW_DATA

http_event

YouTube_request_event

ftp_event

e1

e8 e9

e11 e12

v1

s1 New flow

Points to a virtual root that has
a set of dependency trees

s2

on_yt_request

on_ftp_event

Event handler
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Update on Event Dependency Tree

 s3 adds a new event <e8, f8> to v3
 v4 is created with a new event and s3 

points to it
 s2 adds the same event <e8, f8> to v3
 v4 already exists, but how does s2 find 

v4?
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Efficient Search for an Event Dependency Tree
 Each event dependency tree has an ID

• id (virtual root) = XOR sum of hash (event + event handler)
• id (v3) = hash (e11 + f11) ⊕ hash (e10 + f10)

 New tree id after adding or deleting <e, f> from t
• id (t’) = id (t) ⊕ hash (e + f)
• Add <e8, f8> to v3?

– id(v4) = id(v3) ⊕ hash (e8 + f8)
• Remove <e10, f10> from v4?

– id (v5) =  id(v4) ⊕ hash (e11 + f11)
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Current mOS stack API

Socket creation and traffic filter
int     mtcp_socket(mctx_t mctx, int domain, int type, int protocol);
int     mtcp_close(mctx_t mctx, int sock);
int mtcp_bind_monitor_filter(mctx_t mctx, int sock, monitor_filter_t ft);

User-defined event management
event_t mtcp_define_event(event_t ev, FILTER filt);

int mtcp_register_callback(mctx_t mctx, int sock, event_t ev, int hook, CALLBACK cb); 

Per-flow user-level context management
void *  mtcp_get_uctx(mctx_t mctx, int sock); 

void    mtcp_set_uctx(mctx_t mctx, int sock, void *uctx);

Flow data reading
ssize_t mtcp_peek(mctx_t mctx, int sock, int side, char *buf, size_t len); 

ssize_t mtcp_ppeek(mctx_t mctx, int sock, int side, char *buf, size_t count, off_t seq_off);

23

17 functions are currently defined
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Current mOS stack API
Packet information retrieval and modification
int mtcp_getlastpkt(mctx_t mctx, int sock, int side, struct pkt_info *pinfo);

int mtcp_setlastpkt(mctx_t mctx, int sock, int side, off_t offset, byte *data, uint16_t 
datalen, int option);

Flow information retrieval and flow attribute modification
int mtcp_getsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t *len); 

int mtcp_setsockopt(mctx_t mctx, int sock, int l, int name, void *val, socklen_t len);

Retrieve end-node IP addresses
int mtcp_getpeername(mctx_t mctx, int sock, struct sockaddr *addr, socklen_t *addrlen);

Per-thread context management
mctx_t mtcp_create_context(int cpu); 

int mtcp_destroy_context(mctx_t mctx);

Initialization
int mtcp_init(const char *mos_conf_fname);

24
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Fine-grained Resource Allocation
 Not all middleboxes require full features

• Some middleboxes do not require flow reassembly
• Some middleboxes monitor only client-side data
• No more monitoring after handling certain events

 Fine-control resource consumption
• Disable flow reassembly but keep only metadata
• Enable flow monitoring for one side
• Stop flow monitoring in the middle 
• Per-flow manipulation with setsockopt()
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// disabling receive buffers for both client and server stacks
int zero = 0; 
if (!(config_monitor_side & MOS_SIDE_CLI))

mtcp_setsockopt(mctx, sock, SOL_MONSOCKET, MOS_CLIBUF, &zero, sizeof(zero));
if (!(config_monitor_side & MOS_SIDE_SVR))

mtcp_setsockopt(mctx, sock, SOL_MONSOCKET, MOS_SVRBUF, &zero, sizeof(zero));
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mOS Networking Stack Implementation
 Per-thread library TCP stack

• ~26K lines of C code (mTCP: ~11K lines)
• Based on mTCP user level TCP stack [NSDI ‘14] 
• Exploits parallelism on multicore systems

 Event implementation
• Designed to scale to arbitrary number of events
• Identical events are automatically shared by multiple flows

 Applications ported to mOS: ~9x code line reduction
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Application Modified SLOC Output
Snort 884 79,889 HTTP/TCP inspection
nDPI 765 25,483 Stateful session management

PRADS 615 10,848 Stateful session management

Abacus - 4,091→486 Detect out-of-order packet retransmission
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Evaluation: Experiment Setup

 Operating as in-line mode: clients  mOS applications  servers
 mOS applications with mOS stream sockets

• Flow management and forwarding packets by their flows
• 2 x Intel E5-2690 (16 cores, 2.9 GHz)
• 20 MB L3 cache size, 132 GB RAM
• 6 x 10 Gbps NICs

 Six pairs of clients and servers: 60 Gbps max
• Intel E3-1220 v3 (4 cores, 3.1 GHz)
• 8 MB L3 cache size
• 16 GB RAM
• 1 x 10 Gbps NIC per machine

27
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Performance Scalability over # of CPU cores
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 Concurrent number of flows: 192,000
• Each flow downloads an X-byte content in one TCP connection
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 Two simple applications
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• Searching for a string in flow reassembled data (full flow reassembly & DPI)
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Latency Overhead by mOS Applications
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Event Management Performance

 192,000 concurrent flows downloading large files
 mOS application searches for a string
 Increases the number of events per flow (4 to 64)
 mOS improves the performance by 3.5 to 17.3 Gbps

30



NETWORKED & DISTRIBUTED COMPUTING SYSTEMS LAB

Performance Under Selective Resource Consumption
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Real Application Performance
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Application original + pcap original + DPDK mOS port
Snort-AC 0.57 Gbps 8.18 Gbps 9.17 Gbps
Snort-DFC 0.82 Gbps 14.42 Gbps 15.21 Gbps
nDPIReader 0.66 Gbps 28.92 Gbps 28.87 Gbps
PRADS 0.42 Gbps 2.03 Gbps 1.90 Gbps

• Workload: real LTE packet trace (~67 GB)
• 4.5x ~ 28.9x performance improvement
• Mostly due to multi-core aware packet processing (DPDK)
• mOS additionally brings code modularity and correct flow 

management
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Conclusion
 Current middlebox development suffers from 

• Lack of modularity
• Lack of readability
• Lack of maintainability

 Key idea: reusable, common flow management for middleboxes
 mOS stack: abstraction for flow management

• Programming abstraction with socket-based API
• Event-driven middlebox processing
• Efficient resource usage with dynamic resource composition
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Thank You!
 mOS API and documentation: 

http://www.ndsl.kaist.edu/mos/
 We will release the source code soon!
 Questions?
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http://www.ndsl.kaist.edu/mos/
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