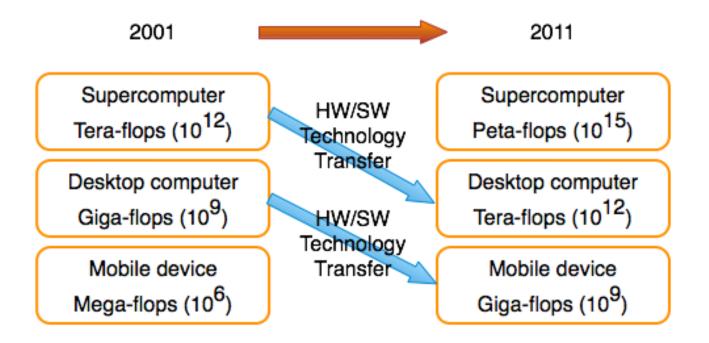
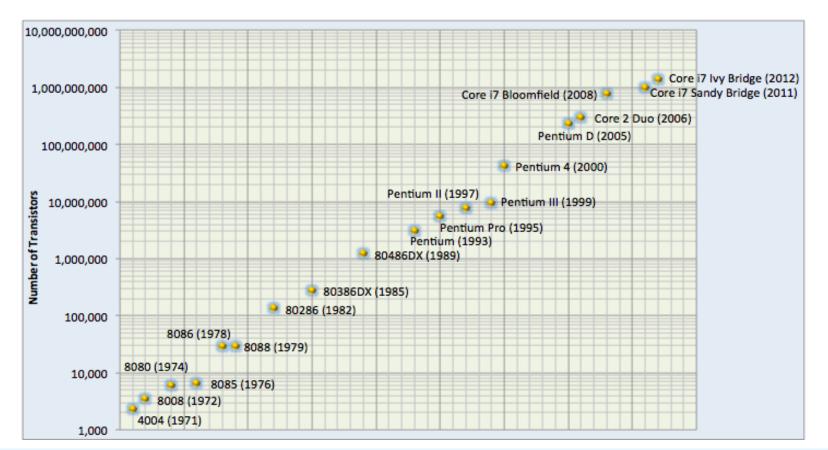
Heterogeneous Computing Clusters for HPC


Jaejin Lee Center for Manycore Programming Seoul National University

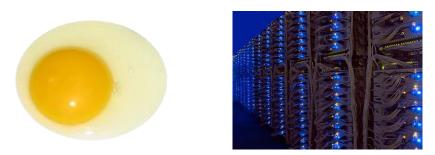
Trends in Performance

- HW/SW technology transfer pattern
 - Duration for technology transfer will be much shorter (3 \sim 5 years)
 - Expecting exa-scale (10¹⁸ flops) computing by 2020



Moore's Law

 The number of transistors on a single die doubles approximately every two years



Power Wall

- CPU's computing power \propto CPU clock frequency
- Power consumption ∝ CPU clock frequency
 - Cannot increase the CPU clock frequency indefinitely
 - Frequency increase stopped at 3GHz ~ 4GHz
- Heat dissipation (for servers) \propto power consumption
- Battery life for mobile devices
 - Inversely proportional to power consumption

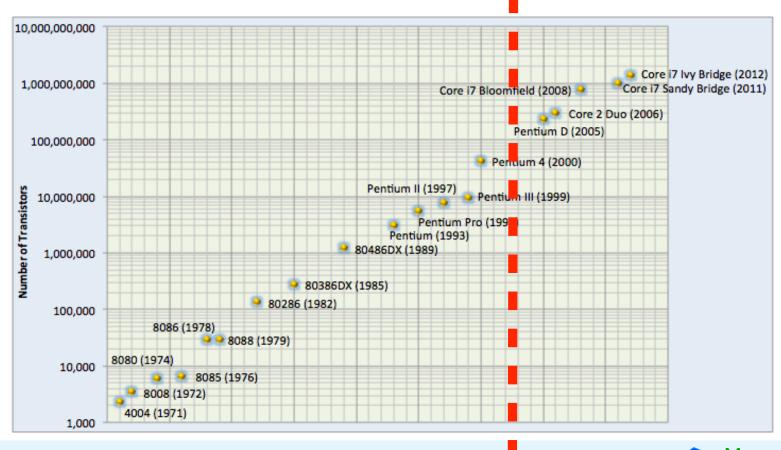
Issue Width of Superscalar Processors

- The goal of the instruction pipeline
 - To issue an instruction on every clock cycle
- Issuing an instruction
 - The instruction proceeds into the execution unit (in general)
- Issue-width is the maximum number of instructions that can be issued by a processor
 - When the hardware can issue up to n instructions on every cycle:
 - The processor has n issue slots
 - The processor is an n-issue processor

ILP Wall

- Instruction Level Parallelism
 - How many instructions can be issued at the same time?
- The lack of ILP in a single thread
 - The ILP in an application is limited
 - Cannot increase the issue width indefinitely
- However, ILP has enabled the rapid increase in processor speed so far

Multicores


- A multicore is a single chip that contains two or more independent processors, called cores
- Manycore
 - A multicore with more than 8 or 16 cores
- A solution to the power wall and ILP wall

New Moore's Law

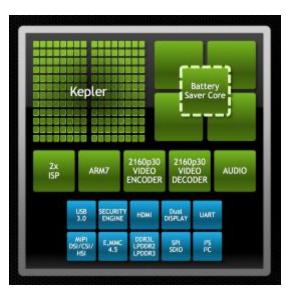
 The number of cores in a single chip doubles approximately every two years

Mobile Systems vs. General-purpose Systems

- Different in terms of
 - Compute power
 - Memory size
 - Memory bandwidth
 - Power consumption
 - Physical size
 - Cost
- The principle behind is the same

Demands in Mobile Processing

- Mobile devices will be facing the same level of performance and power demands as that of PCs
 - Web browsing, HD video, 3D gaming, multitasking, etc.



The Era of Multicores

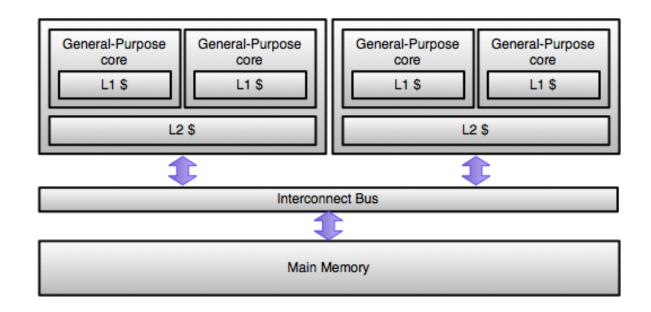
To overcome the Power Wall and ILP Wall

ARM CoreSight" Multicore Debug and Trace Generic Interrupt Control and Distribution									
FPU/NEON	FPU/NEON	Dat	VNEON	FPU/NEON					
Data Engine	Data Engine		a Engine	Data Engine					
Integer CPU	Integer CPU		ger CPU	Integer CPU					
Virtual 40b PA	Virtual 40b PA		ral 40b PA	Virtual 40b PA					
L1 Caches	L1 Caches	1000	Caches	L1 Caches					
with ECC	with ECC		th ECC	with ECC					
	Snoop Control Unit	(SCU) a	nd L2 Cache						
Direct Cache		vate	Accelerator	Error					
Transfers		herals	Coherence	Correction					
	Filtering Perip								

NVIDIA Tegra K1

from www.nvidia.com

Intel Xeon Phi


from www.intel.com

Homogeneous Multicore Architectures

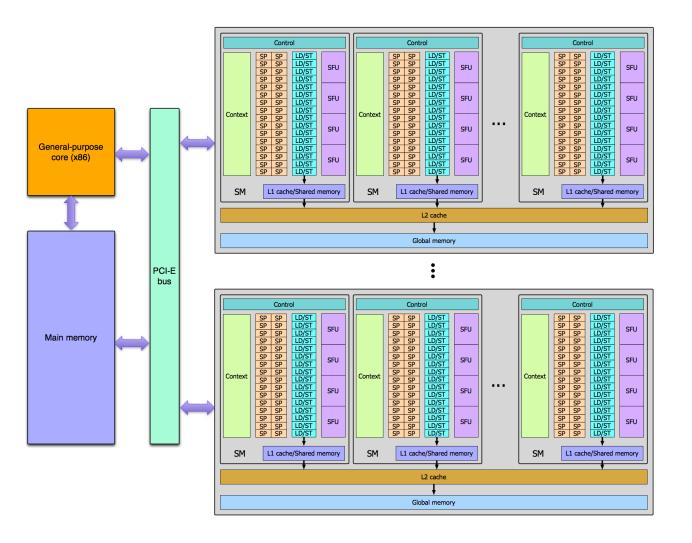
- Multiple homogeneous cores in a single chip
- Intel Xeon, AMD Opteron, ARM Cortex A15 MPCore, IBM Power7, Oracle UrtraSPARC T4, etc.

ARM Cortex A15 MPCore

FPU/NEON			Generic Interrupt Control and Distribution									
Data Engine	FPU/NEON Data Engine		1010100	/NEON a Engine	FPU/NEON Data Engine							
Integer CPU Virtual 40b PA	Integer (Virtual 40		Integer CPU Virtual 40b PA		Integer CPU Virtual 40b PA							
L1 Caches with ECC	L1 Cach with E0	1000	L1 Caches with ECC		L1 Caches with ECC							
Si	noop Contr	ol Unit (SCU) a	nd L2 Cache								
Direct Cache Transfers			vate Accelerato		a subscription of the second							
128-bit	: AMBA4 - A	dvanced	l Coher	ent Bus Inter	face							

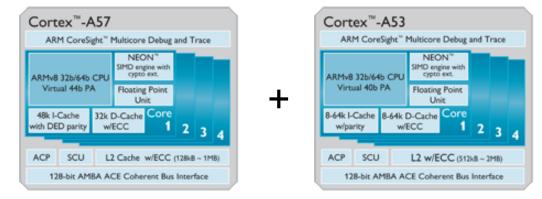
from <u>www.arm.com</u>

Heterogeneous Computing Systems


- Contain different types of processors
 - Processors: CPUs, DSPs, GPUs, FPGAs, or ASICs
 - For extra performance and power efficiency
- General-purpose processors (resource management) + accelerator processors (compute intensive)
- Heterogeneity in
 - ISAs, processing power, power consumption, memory hierarchies, micro-architectures, etc.

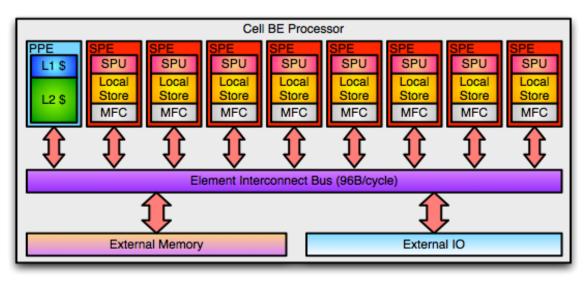
GPGPU

 General-Purpose computing on Graphics Processing Units



Heterogeneous Multicore Architectures

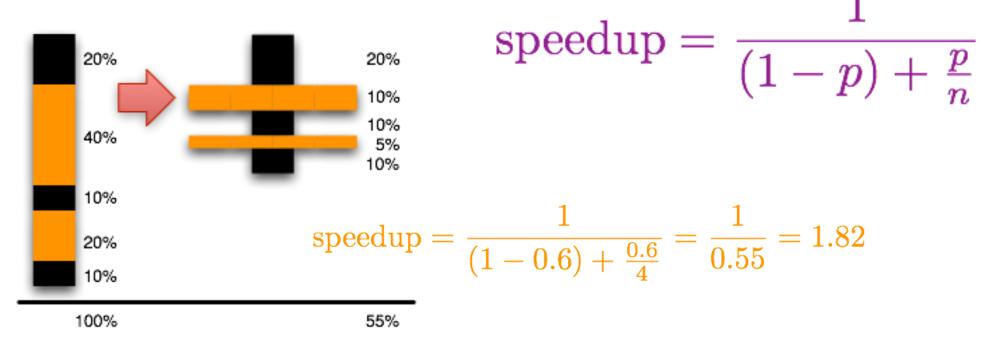
- Asymmetric multiprocessing (ASMP)
- Asymmetric chip-multiprocessor (ACMP)
- AMD fusion, Intel i7, AMD Fusion, IBM Cell BE, TI OMAP, ARM big.LITTLE, Nvidia Tegra, etc.


from <u>www.arm.com</u>

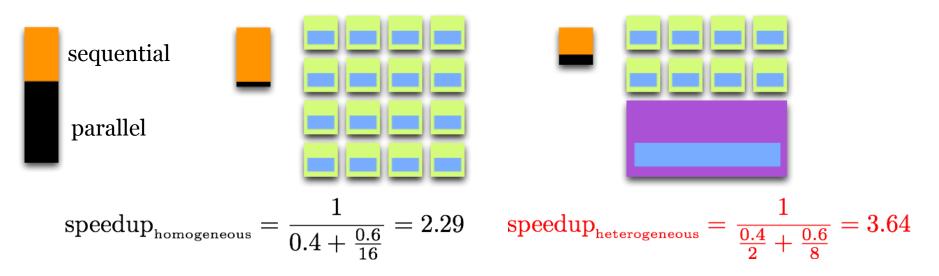
Cell Broadband Engine

- Used in Sony Playstation 3
- IBM Roadrunner supercomputer
 - 12,960 IBM PowerXCell 8i processors + 6,480 AMD Opteron dual core processors
 - The first 1.0 Pflops system
 - Ranked the first in Top500 in June 2008

- Altera supports OpenCL(not hardware specific) for FPGAs
- FPGA as an accelerator



Amdahl's Law

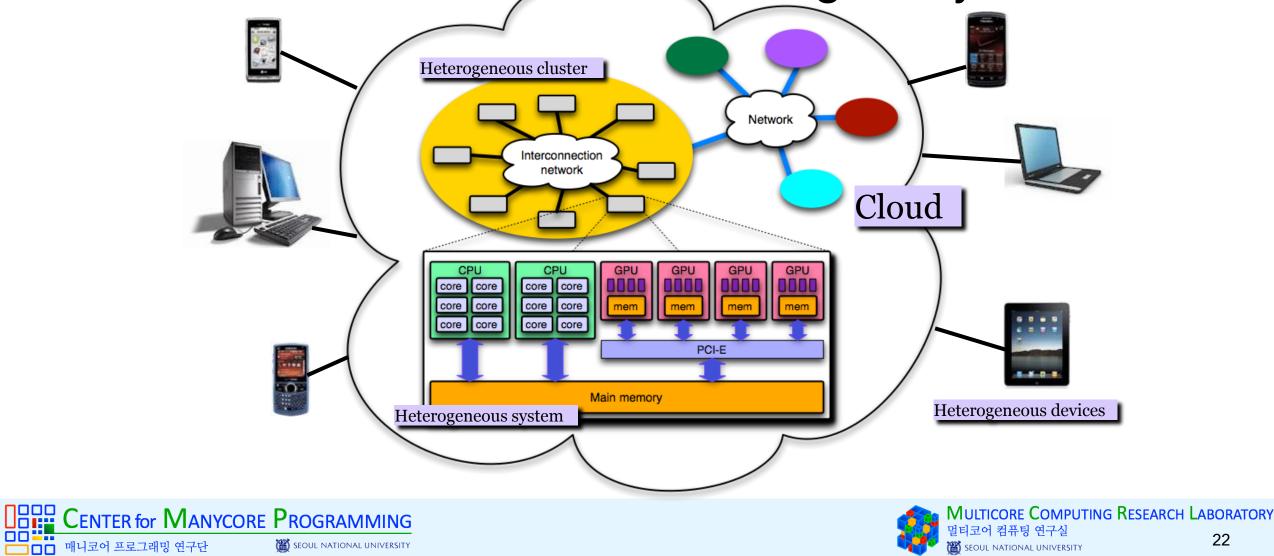

- p: the proportion of a program that can be parallelized
- 1 p: the proportion of a program that cannot be parallelized
- n: the number of processors

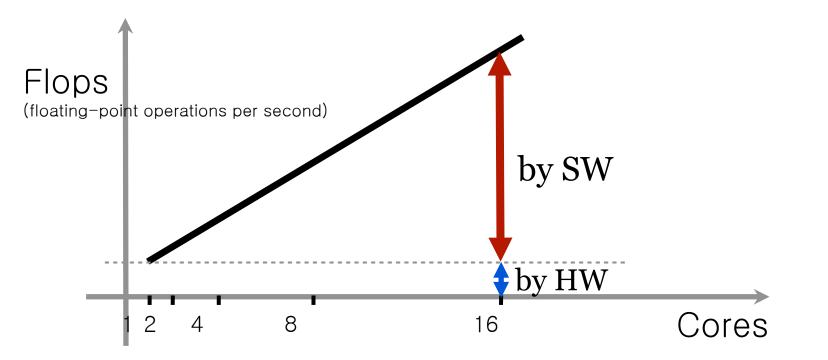
Why Heterogeneous Systems?

- Assume,
 - A sequential code fragment that takes 40% of the sequential execution time can be accelerated by an accelerator core
 - A single large core runs the sequential code twice as fast
 - The rest of the program (60%) can be parallelizable

The Trend in TOP500

 The number of heterogeneous supercomputers is increasing


Top500	Jun 2009	Nov 2009	Jun 2010	Nov 2010	Jun 2011	Nov 2011	Jun 2012	Nov 2012	Jun 2013	Nov 2013	Jun 2014
Homogeneous	495	493	491	483	481	461	442	438	446	447	436
Heterogeneous	5	7	9	16	19	39	58	62	54	53	64 (12.8%)



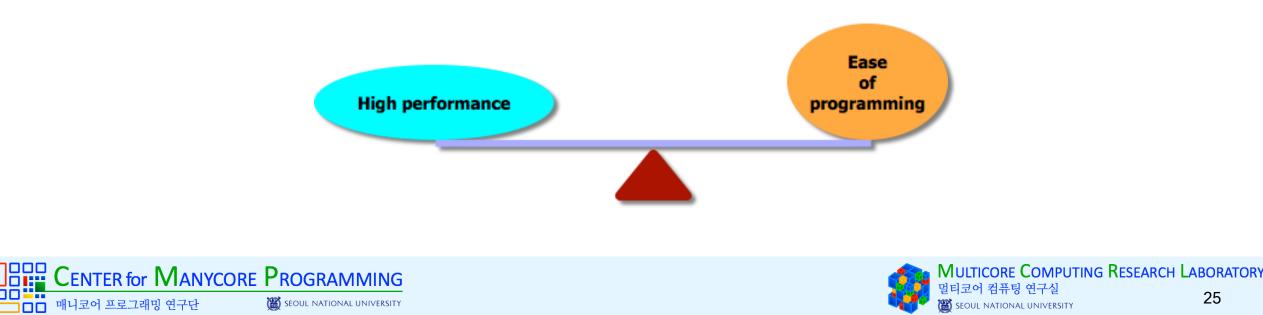
Heterogeneous Parallel Computing

How to deal with such heterogeneity

Multicore Programming

Programming Wall

- How to easily create software that efficiently exploit the parallelism of manycore hardware
- Has not been solved for last 30 years
 - For traditional multiprocessor systems



Parallel Programming Models

- An interface between the programmer and the parallel machine when developing an application
 - Languages, libraries, language extensions, compiler directives, etc.
- Important to have balance between delivering high performance and ease of programming

Parallel Programming Models

- Pthreads (POSIX threads)
- Message Passing Interface (MPI)
- OpenMP
- OpenCL
- SnuCL
- CUDA
- OpenACC
- Cilk
- ...

OpenCL

- Open Computing Language
- A framework (parallel programming model) for heterogeneous parallel computing
 - A language, API, libraries, and a runtime system
 - From mobile devices to supercomputers
 - License free
- The specification of OpenCL 1.0 was released in late 2008
 Now, OpenCL 2.0, but no implementation available yet
- Portable code across different architectures
 CPUs, GPUs, Cell BE processors, Xeon Phi, FPGAs etc.
- Based on ANSI/ISO C99 standard
- Supported by many vendors, such as Apple, AMD, ARM, IBM, Intel, NVIDIA, Samsung, TI, Qualcomm, etc.

Conclusions

- Heterogeneous computing will be popular
- Many opportunities
 - R&D activities has begun recently (3~4 years ago)
- Software is very important
- New programming models

