

The Future Internet as second chance for security – Challenges and first ideas

Erwin P. Rathgeb

Computer Networking Technology Group Institute for Experimental Mathematics University Duisburg-Essen

SPONSORED BY THE

Overview

- Introduction
 - Convergence of networks → convergence of risks
- Network and service security
 - Some observations and trends
 - Typical example: SIP-based VoIP
- Future Internet as a second chance for security
 - Why do we need a second chance?
 - Why the Future Internet?
- Security activities in the G-Lab context
 - Overview
 - G-Lab DEEP Cross-Layer detection and mitigation
- Conclusion
 - Major challenges for (Future Internet) security reasearch

Converging networks and services – Convergence of risks

Based on a contribution of Steffen Fries to the ITG Expert Group 5.2.2 "Network Security"

Security in the net – also a matter of architecture

PSTN/ISDN	Strict separation of control and user data		Access difficult
	Specific, complex protocols and interfaces		Manipulation difficult
Cellular	Trust by wire	SIM	Attacker trackable
	Functionality mainly in infrastructure nodes		Limited vulnerability
	Few, distinct and well defined services		Limited motivation
TCP/IP	Integration of control and user data		Access simple
	Open, widely used protocols and interfaces		Manipulation simple
NGN	No comprehensive authentication		Anonymous attackers
	Functionality mainly in the end devices		Enormous opportunities
	Universal network, wide variety of services Converged networks		High motivation
			Alternatives
Additional, centralized functionality in infrastructure		Vulnerable for DoS	
	Services and software from many different sources		Vulnerabilities
Future Internet ????		????	

State of Internet security 2004 – **Malware**

- Field study 2003-2005
 - Dedicated "Honeynet"
- Honeynet was attacked immediately
 - No further actions needed to make Honeynet known
- Further observations
 - Nearly 100% automated attacks
 - Dominating OS was main target
 - Attack types and frequencies are external factors

Riebach, S.; Rathgeb, E.P.; Toedtmann, B.: Efficient Deployment of Honeynets for Statistical and Forensic Analysis of Attacks from the Internet. In: Proceedings of "IFIP NETWORKING 2005", Waterloo Ontario, Canada (2005)

Attacks and misuse schemes – Some observations

- Every new technology is exploited
 - Voicemail systems (1990)
 - Got hacked to get e.g. credit card information
 - Were used to distribute messages with explicit content
 - Malware
 - PCs → Smartphones → Game consoles (first reports) → ???
- Successful attack patterns are adapted and reused
 - SPAM/Phishing
 - Paper mail → E-Mail → SMS → VoIP (SPIT)
- ► Each service/application provides specific attack/misuse opportunities
 - Example Voice over IP
 - Registration Hijacking and Toll Fraud

VoIP Fraud & Misuse Detection System – Basic setup

VoIP Fraud & Misuse Detection System results – Attack intensitiy is increasing significantly

VoIP Honeynet project -Registration Hijacking & Toll Fraud examples

Registration Hijacking

[Feb 11 19:58:37] NOTICE[3062] chan_sip.c<mark>: Registration from "768"</mark> sip:768@132.252.152.211>' failed for '77.48.88.60 [Feb 11 19:58:37] NOTICE[3062] chan_sip.c; Registration from ""769" sip:769@132.252.152.211>' failed for '77.48.88.60' [Feb 11 19:58:37] NOTICE[3062] chan sip.c. Registration from "770" sip:770@132.252.152.211>' failed for '77.48.88.60 [Feb 11 19:58:37] NOTICE[3062] chan sip.c: Registration from "771" sip:771@132.252.152.211>' failed for '77.48.88.60 [Feb 11 19:58:38] NOTICE[3062] chan_sip.c: Registration from "772" sip:772@132.252.152.211>' failed for '77.48.88.60 [Feb 11 19:58:38] NOTICE[3062] chan_sip.c<mark>: Registration from "773"</mark> sip:773@132.252.152.211>' failed for '77.48.88.60 [Feb 11 19:58:38] NOTICE[3062] chan_sip.c; Registration from "'774" sip:774@132.252.152.211>' failed for '77.48.88.60' [Feb 11 19:58:38] NOTICE[3062] chan sip.c. Registration from "775" sip:775@132.252.152.211>' failed for '77.48.88.60

Toll Fraud

```
+ Sat Feb 13 02:21:45 117.41.229.31 call to: 90441383417547 voh sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:21:55 117.41.229.31 call to: 0441206751586 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:21:56 117.41.229.31 call to: 9011441763837000 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:21:57 117.41.229.31 call to: 000447850019298 vpn sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:21:58 117.41.229.31 call to: 1447768993716 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:21:59 117.41.229.31 call to: 90441383417547 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:22:09 117.41.229.31 call to: 0441206751586 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:22:10 117.41.229.31 call to: 0011442075964032 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:22:13 117.41.229.31 call to: 00000441628481177 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:22:13 117.41.229.31 call to: 0001442078493108 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
+ Sat Feb 13 02:22:14 117.41.229.31 call to: 90441383417547 von sip, UserAgent: Asterisk PBX, URI: sip:sip@117.41.229.31
```

```
+ Wed Feb 10 17:25:36 113.105.152.104; call to: 90900331828029 von sip, UserAgent: Asterisk PBX, URI: sip:sip@113.105.152.104
+ Wed Feb 10 18:21:46 113.105.152.104 call to: 0900331828029 von sip, UserAgent: Asterisk PBX, URI: sip:sip@113.105.152.104
+ Wed Feb 10 19:20:36 113.105.152.102 call to: 00090033182802 von sip, UserAgent: Asterisk PBX, URI: sip:sip@113.105.152.102
```


UNIVERSITÄT

Automated tools for VoIP attacks – Already available in the Internet

Registration
Hijacking
SIPvicious ToolBox

svmap Scan for SIP registrars

Scan for active extensions

svcrack
Password scan

Denial of Service

Flooder
Perform DoS
attack with
SIP-Invites

SIP-INVITE

SPIT Generator (student project)

Asterisk SW-PBX
with call files
Generate SPIT
calls with freely
configurable
announcement

Call file extension for Phishing Record answers

Why do we need a second chance for security? "Fix it as you go" approach

The Future Internet – Chance to start all over again?

- Novel addressing and routing concepts
 - Locator/identifer split
 - Multihoming/Multipath
- Network virtualization
 - Multiple coexistent networks
 - optimized
- Service components instead of protocols
 - Service oriented approach
 - Orchestration of services
 - flexible
 - application specific
 - dynamic

Paul Müller, Bernd Reuther, AG ICSY, University of Kaiserslautern, http://www.icsy.de

Security as design goal right from the start

G-Lab security activities – Overview

- Special Interest Group "Security"
 - Stimulate cooperation among existing projects
 - Identify and discuss challenges and solutions
 - Share tools developed in the projects
- Security topics taken up in G-Lab projects (examples)
 - Security implications of network virtualization
 - Security implications of energy efficient operation of virtual networks
 - Security aspects of overlay networks
 - Cross-layer cooperative attack/misuse detection and mitigation

G-Lab DEEP – Deepening G-Lab for Cross-Layer Composition

Erwin P. Rathgeb
The Future Internet as second chance for security –
Challenges and first ideas

G-Lab DEEP – Cross-Layer Monitoring and Attack Mitigation

Erwin P. Rathgeb
The Future Internet as second chance for security –
Challenges and first ideas

G-Lab DEEP – Cross-Layer Monitoring and Attack Mitigation

Erwin P. Rathgeb
The Future Internet as second chance for security –
Challenges and first ideas

G-Lab DEEP – Cross-Layer Monitoring and Attack Mitigation

G-Lab DEEP – Cross-Layer Monitoring and Attack Mitigation

Network and service security – Major issues and challenges

Strong authentication and encryption – Applicability and limitations in dynamic, open environments

Authentication versus trust – Tradeoff between control and anonymity/privacy

Generic and service specific misuse and attack patterns – Proactive approach to detection and mitigation

DoS is different from other threats (and very popular) – No acceptable solution concepts known yet

Distibuted, cross-layer security functions – Definition of function split and cooperation algorithms

New paradigms, architectures and functions – Assessment and mitigation of vulnerability/misuse potential

