

Wireless Access and the Future Internet Concepts and Experimental Validation

Hans D. Schotten
Wireless Communications and Navigation Group
University of Kaiserslautern

Overview

Wireless access and the future internet

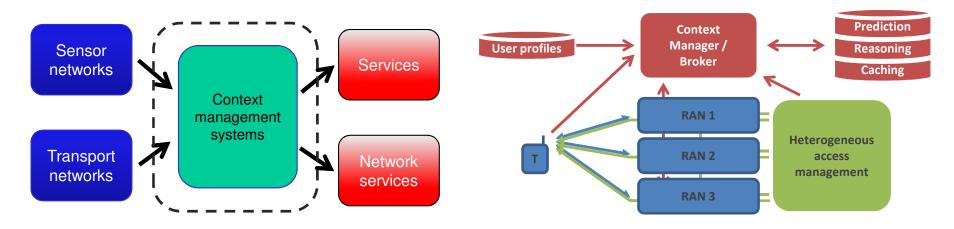
- ▶ Challenges
- Roadmap
- Concepts
- Experimental Validation

Challenges

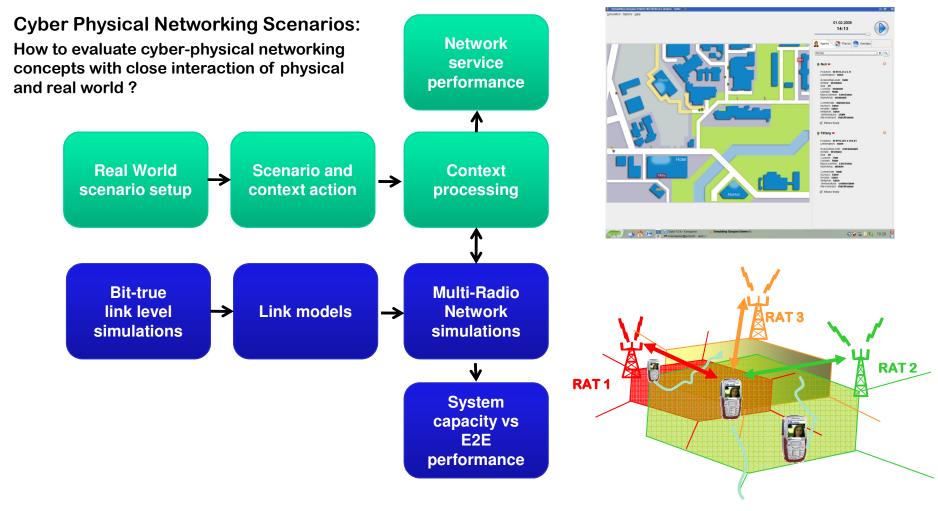
- ► Fast growing mobile internet traffic volume
 - Mobiles are most commonly used consumer product
 - 5.3 billion subscribers; global penetration of 77%; 1,4 billion phones sold
 2010
 - Drivers for mobile data volume
 - Smart phones and mobile applications
 - 2015 internet access by mobile will outnumber access per PC
 - 200 million mobile facebook users
 - Mobile apps, video telephony, augmented reality, mobile games, mobile
 YouTube usage will drive mobile data volume
- Emerging usage areas using mobile internet access
 - M2M for logistics, smart grids, e-mobility, ...
 - Ericsson expects 50 billion M2M devices to be connected in 2020
 - Europe: 245 m cars, 320 m e-meters, 25 m containers, automotive, ...
 - EU PPP FI program could drive these areas

Challenges

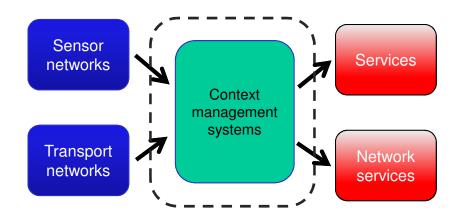
- New usage areas with high requirements on security, real-time capability, availability, and reliability
 - User centricity services (m-payment, e-health, assisted living)
 - Cyber-physical services (automotive, automatic train control, smart production and logistics)
- ► Faster innovation cycle
 - Replacement rate of mobiles still below 30 months
- Interference and heterogeneous access
 - Interference between radio links
 - Multicasting
- Mobility & roaming
- Heterogeneous landscape of networks and standards


Challenges and Requirements

- Ubiquitous network access with scalable requirements
 - Costs, reliability, security, availability
- Real-time networks for cyber-physical systems
- Discovery and management of network elements and connectivity services
- Cost- and energy-efficient networks
- Autonomous mobile mini-networks
- Revision of the protocol and standardization methodology
- Methodology for an evaluation of cyber-physical concepts
- Methodology for reproducible experiments for wireless networks
- Methodology for a quantitative assessment of safety and security problems with wireless networks


Concepts: Context-Aware Networking

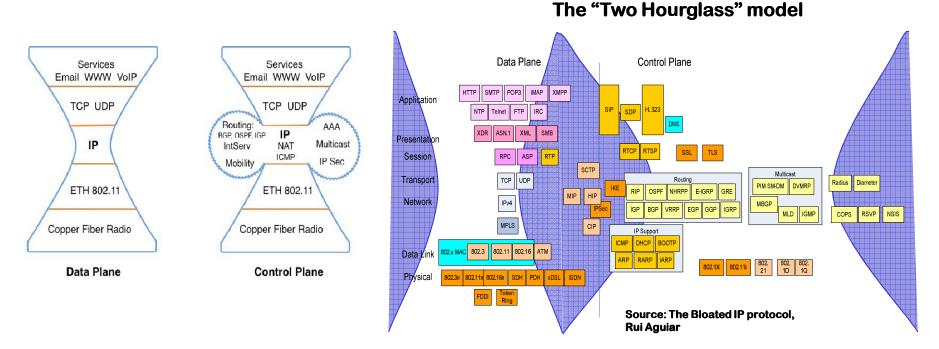
- Ubiquitous network access with scalable requirements
 - Heterogeneous network access / SON / network management
 - Connectivity as a service and Communications Delivery Platforms
 - Cognitive / context-aware / content & application aware networking
 - Off-loading techniques
 - Spontaneous networks for social apps, mobile WSN, ...
 - Hot spot (e.g., LTE router) or femto-cell integration


Concept Assessment by Simulations and in our G-Lab Real-World Test Environment

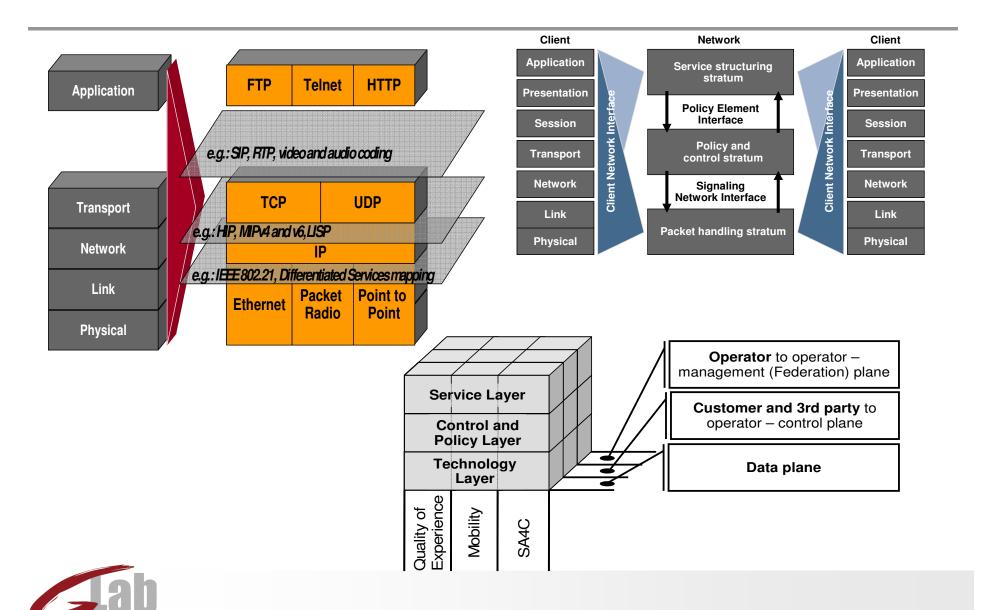
Scalability of Multi-sensor Systems

- Visions (e.g., Ericsson, WWRF) predict tens of billions or trillions of networked sensors.
- ► Filtering of sensor data by location or other relevant metrics on network level ?

- ▶ Potential approaches: hierarchical WSN structures, adaptive push/pull approaches, service controlled caching mechanisms, modified DHT filtering, ...
- Assessment requires cross-layer experimental facility (data transport and some example use cases / applications)
- Exact framework specification is tbd.


Reliability and Availability

- Many new services require a yet unknown level of reliability, availability and security.
- ► Limited energy supply, interference from other systems, vendorspecific product variations, sensor ageing, and attacks need to be detected.
- ➤ Self-X functionalities for monitoring and self management shall allow to deploy and use multi-vendor sensor environments.
- ► G-Lab provides a heterogeneous sensor network test environment with a sensor gateway for self-x algorithm implementation.
- Sensor (network and physical world) can be manipulated in order to reflect ageing, attacks, interference, etc.


Specification and Standardization

- Implementation of mobile applications, services and network concepts requires system integration across many standards.
- Known problems of existing internet standards are just one (but the most relevant) problem.

Specification and Standardization - Examples

Invitation

- ▶ Join us in defining an assessment methodology and experimental setup that allows to quantitatively evaluate key performance indicators of
 - wireless sensor networks,
 - real-time networking,
 - intelligent heterogeneous access concepts,
 - context- and content-aware network solutions, and
 - cyber-physical networking

with respect to scalability, reliability, security, energy-efficiency, and all relevant network KPIs.

THANK YOU

CV of Hans D. Schotten

► Since 2007: Professor and Head of the Institute of Wireless Communications

and Navigation, University of Kaiserslautern

2003 – 2007: Director, Technical Standards and Research Coordinator, Europe

of Qualcomm Inc.

▶ 1999 – 2003: Senior Researcher, Ericsson Corporate Research

1990, 1997: Diploma and PhD in Electrical Engineering from RWTH Aachen

University of Technology

- Company delegate and representative in 3GPP, ETSI, WWRF, e-mobility forum (NetWorks), bmco forum, EICTA and other industry and research for a
- Participants in several EU and German projects (incl. Scientific Council of EU PPP Future Internet Core Platform FI-WARE and G-Lab)

