Content-oriented Networking (CON)

Ted "Taekyoung" Kwon SNU

> Mar-8-2011 SNU

outline

- IP networking vs. Content networking
- CANA (Content-aware Network Architecture)
- SCAN (Scalable Content Routing for Content-Aware Networking)

Why Internet has problems?

- Original motivation for Internet is to share computing resources
 - Remote login, file transfer
- Hence the Internet communication model is static host-to-host conversations
- It is ossifying
 - Mobility, security, accountability,,...

Why content-oriented networking (CON)?

- Internet traffic is already content-oriented
 - CDN, Edge Caching, multimedia, P2P, web, ...
- Users/applications care "what to receive"
 - They don't care "from where"
- Storage cost is getting cheaper sharply
 - Compared to networking cost
- Other advantages of CON

IP networking

- Lookup-by-name
 - DNS: Indirection from name to locator
 - DNS is extendible and highly available
 - Distributed design, caching
 - Host/link availability concern
- Delivery inefficiency concern
- Locators can be aggregated
 - Network prefix
 - Currently 350k+
 - Routing scalability is better than CON

Content-oriented networking (CON)

- Route-by-name
 - No indirection, better availability
 - Content name (or ID) is a routing entry
 - Huge scalability concern
- Global-scale and systematic CON may not be feasible
 - NDN, TRIAD
 - Some aggregation by using URL-like names
 - DONA, PSIRP
 - Flat names for persistency
- Better delivery performance
 - Exploiting multiple sources, multiple paths/interfaces
 - Potential opportunities for data explosion

outline

- IP networking vs. Content networking
- CANA (Content-aware networking architecture)
- SCAN (Scalable Content Routing for Content-Aware Networking)

What is an IP address?

IP address

- An IP address originally indicates the endpoint
 - End-to-end principle
 - Serves as both locator and identifier
- Current role of IP address
 - Not endpoint
 - NAT, tunneling, overlay,...
 - Not identifier
 - Mobility, multi-homing,...

Then what should be an IP address?

- Just locator
 - Not identifier

- Locater of next transit point
 - NAT, tunneling,...
 - Some agents
 - E.g. mobility agent in mobile IP solutions
- Transit-by-transit
 - Not end-to-end

Wait, where is the endpoint identifier?

- How about using some other identifier?
- General identifier requirements
 - Unique
 - Routable/locatable
 - Persistent
 - Location-independent

We choose uniqueness and routability

How about Content identifier (CID)?

- CID will fill the fading role of the IP address
 - Host-independent endpoint identifier
- Globally routable and Unique
- Domain name (or public IP address) + port number (or its hint)
 - Static content, e.g. http://www.nytimes.com/logo.jpg
 - Dynamic content, e.g. 20.30.40.50:4000

Content-aware Network Architecture (CANA)

- Network layer is renamed as transit layer
- Transport layer is extended to global layer
 - CID is added
- CID is locatable and unique
- Additional content info (e.g. bit rate, chunk index) helps other layers
 - Deep packet inspection is assumed for other layers

CANA: Host side

- New model for IP subnet:
 - solicitor vs. agent
 - An access router becomes an agent
 - Solicitor and its agent communicate in a contentoriented fashion
 - An agent contacts DNS
 - Solicitors cannot
 - solicitor cannot contact server directly

Other aspects of agents

- Flash crowd can be dealt with by caching content at agents
- NAT does not matter

- First line of defense
 - Supervise users by looking at content requests
 - Better accountability

CANA: Publisher side

- Registers its hostname with the DNS
 - Agent's IP address
- Publisher and agent will communicate in a content-oriented fashion

* Assume that publication is already done

Intra-domain

- Publisher's agent will be contacted by the solicitor's agent
- Publisher's agent will receive the content from the publisher
 - Will relay the content to the host via the host's agent
- Agents can cache contents

Inter-domain (Next stage)

- Gateway A requests the content to gateway B
- Gateway B will get the content from agent of publisher
 - Then relay the content to gateway A
- Gateway A will relay the content to the agent of the host
- Gateways can cache contents

Content-aware routers (CARs)

- Legacy routers look at IP address in transit header
- CARs look at CID in global header as well
- CARs can participate in content relaying
 - CARs can cache contents

CANA operations: Content Request Message

 As content request message traverses, a content info base (CIB) entry is set up backwards to relay content data

outline

- IP networking vs. Content networking
- CANA (Content-aware Network Architecture)
- SCAN (Scalable Content Routing for Content-Aware Networking)

IP vs. Content networking

- Inefficiency in TCP/IP networking
 - Cannot know closer copies of the content
 - Don't do parallel transmissions
- Content networking
 - Scalability, reachability issues
- Our Solution: A hybrid approach
 - IP routing: default routing for reachability
 - Content routing: opportunistic routing for efficiency (closer & multiple copies)

SCAN Overview

- Content routers (C-routers) do IP and content routing
 - Each content has a content identifier (CID)
 - Local content table (LCT): cached content files
 - Content routing table (CRT): CIDs of the content files in neighbor
 C-routers
 - SCAN propagates the information of the contents by Bloom Filter
 (BF) to mitigate the routing scalability issue

Bloom Filter (BF) issues

- More bits of the BF may be set to 1
 - As the number of content files increases
- C-router will decay the bits of a BF probabilistically before exchanging content routing table (CRT) info
 - E.g. if decaying prob. is 0.5, around the half of the bits 1 will be randomly set to 0

SCAN Operations (1/2)

Content Routing

SCAN Operations (2/2)

Content Delivery (an example)

Simulation Setup

- GT-ITM: 1 transit and 5 stub domains
- 1*5+5*20 C-routers and 1,000 end hosts
- Total 20,000 content files
 - 10,000 different content files
 - top 10% have multiple copies: avg. 10 copies
- Content file size: 1GB
 - Each C-router has 100 files
- SCAN vs. IP routing, IP with caching, SCAN w/o BF (BF size C-info), SCAN-full

Simulation Results (1/2)

	SCAN	SCAN- FULL	SCAN w/o BF	IP w/ Caching	IP Routing
Average Number of Hops	3.2	3.2	4.5	4.7	6.8

(a) Network traffic reduction

Simulation Results (2/2)

(b) Original server load reduction

(c) Load balancing among links

Discussions

tkkwon@snu.ac.kr